Stabilizing Role of Moments and Pelvic Rotation on the Human Spine in Compression

1996 ◽  
Vol 118 (1) ◽  
pp. 26-31 ◽  
Author(s):  
A. Shirazi-Adl ◽  
M. Parnianpour

The mechanisms by which the human spinal column in neutral postures can resist relatively large axial compression forces with no abnormal motions or instabilities remain yet unknown. A nonlinear finite element study of the ligamentous thoracolumbar spine was performed to investigate the stabilizing role of two plausible mechanisms of combined moments and pelvic rotation on the human spine in axial compression. The passive system, by itself was able to carry only a negligible fraction of physiological compression loads without exhibiting large motions. The unconstrained spine was most flexible in the sagittal plane (least stiff plane). The existence of combined moments and pelvic rotation significantly increased the load-bearing capacity of the spine so that the free standing passive thoracolumbar spine resisted the axial compression forces of more than 1000 N with minimal displacements. The former mechanism is much more effective in stabilizing the spine in compression than is the latter one. It is postulated that the pelvic rotation and the off-centered anterior placement of the gravity force are exploited to partially stabilize the passive spine in compression and relieve the musculature. Previous and on-going studies support the validity of the proposed mechanisms.

Author(s):  
Paulina Hebisz ◽  
Rafal Hebisz ◽  
Marek Zaton

AbstractBackground: The purpose of this study was to compare body balance in road and off-road cyclists, immediately before and after the racing season.Material/Methods: Twenty individuals participated in the study and they were divided into two groups: specialists in road-cycling (n = 10) and in off-road cycling (n = 10). Immediately before and after the five-month racing season stabilographic trials were carried out (at rest and after progressive exercise). In assessing body balance the distance and velocity of the centre shifts (in the anterior-posterior and left-right direction) were analysed. The tests were performed with the cyclists’ eyes open, eyes closed, and in feedback.Results: After the racing season, in the off-road cyclists’ group, distance and velocity of the centre of pressure shifts increased after a progressive exercise.Conclusions: In the off-road cyclists’ group the balance of the body in the sagittal plane deteriorated after the racing season. Moreover, after the racing season off-road cyclists were characterized by a worse balance of the body, compared to road cyclists


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Hossein Rouhani ◽  
Sara Mahallati ◽  
Richard Preuss ◽  
Kei Masani ◽  
Milos R. Popovic

The ranges of angular motion measured using multisegmented spinal column models are typically small, meaning that minor experimental errors can potentially affect the reliability of these measures. This study aimed to investigate the sensitivity of the 3D intersegmental angles, measured using a multisegmented spinal column model, to errors due to marker misplacement. Eleven healthy subjects performed trunk bending in five directions. Six cameras recorded the trajectory of 22 markers, representing seven spinal column segments. Misplacement error for each marker was modeled as a Gaussian function with a standard deviation of 6 mm, and constrained to a maximum value of 12 mm in each coordinate across the skin. The sensitivity of 3D intersegmental angles to these marker misplacement errors, added to the measured data, was evaluated. The errors in sagittal plane motions resulting from marker misplacement were small (RMS error less than 3.2 deg and relative error in the angular range less than 15%) during the five trunk bending direction. The errors in the frontal and transverse plane motions, induced by marker misplacement, however, were large (RMS error up to 10.2 deg and relative error in the range up to 58%), especially during trunk bending in anterior, anterior-left, and anterior-right directions, and were often comparable in size to the intersubject variability for those motions. The induced errors in the frontal and transverse plane motions tended to be the greatest at the intersegmental levels in the lower lumbar region. These observations questioned reliability of angle measures in the frontal and transverse planes particularly in the lower lumbar region during trunk bending in anterior direction, and thus did not recommend interpreting these measures for clinical evaluation and decision-making.


2018 ◽  
Vol 72 ◽  
pp. 90-98 ◽  
Author(s):  
Narayan Yoganandan ◽  
Jason Moore ◽  
Frank A. Pintar ◽  
Anjishnu Banerjee ◽  
Nicholas DeVogel ◽  
...  

Paraplegia ◽  
2021 ◽  
Author(s):  
Fereshteh Azedi ◽  
Kazem Mousavizadeh ◽  
Mohammad Taghi Joghataei

Paraplegia is the damage or loss of function in motor and/or sensory abilities. This insult can be observed in the thoracic, lumbar, or sacral parts of spinal column. Besides, paraplegia may be occurring because of any injuries or diseases of the lower segments or peripheral nerves or by cerebral palsy (CP). This damage can be seen as a result of a tumor or blood clot on the spinal cord. By now, there is not any curative treatment for paraplegia. Using mesenchymal stem cells (MSCs) in the treatment of spinal cord injury is a promising tested strategy because of their simplicity of isolation/preservation and their properties. Several preclinical studies in this field can be found; however, MSCs showed weak and conflicting outcomes in trials. In this chapter book, we will discuss about the therapeutic role of these cells in the treatment of paraplegia, with emphasis on their characterization, relevance, boundaries, and prospect views.


2014 ◽  
Vol 50 (Supplement) ◽  
pp. S164-S165
Author(s):  
Yahiko TAKEUCHI ◽  
Megumi OTA ◽  
Takuya OTANI ◽  
Satoshi OGATA ◽  
Makoto MIWA

2004 ◽  
Vol 100 (4) ◽  
pp. 375-377 ◽  
Author(s):  
Stephen J. Hentschel ◽  
Ehud Mendel ◽  
Sanjay Singh ◽  
Laurence D. Rhines

✓ Despite the relatively high incidence of prostate carcinoma involving the spinal column, those that are associated with spinal intradural extramedullary metastases are rare. The role of surgery for metastases to this spinal compartment is limited and palliative because presentation tends to be late in the course of the disease, particularly for prostate carcinoma. It is also considered to be part of the spectrum of leptomeningeal carcinomatosis and is associated with a high incidence of brain metastases. The authors review a rare case of prostate carcinoma metastatic to the spinal intradural extramedullary space and discuss its clinical presentation, imaging features, and surgical management.


2018 ◽  
Vol 44 (12) ◽  
pp. 1089-1091
Author(s):  
S. Yu. Davydov ◽  
A. A. Lebedev ◽  
Yu. V. Lubimova

Sign in / Sign up

Export Citation Format

Share Document