Bond Graph Models for Linear Motion Magnetostrictive Actuators

1996 ◽  
Vol 118 (1) ◽  
pp. 161-167 ◽  
Author(s):  
M. D. Bryant

Bond graph models for the audio range response of a dynamically continuous, linear motion magnetostrictive actuator are formulated and presented. The actuator involves a continuous rod of magnetostrictive material that extends, contracts, and vibrates in modes when energized by magnetic flux produced by a coil. The left end is fixed, force is extracted from the right end. The bond graph model includes dynamics of the energizing coil, the flux routing circuit, magnetic to mechanical energy conversion, and mechanical elements. Constitutive relations for magnetostriction suggest use of a multipart capacitor with ports for magnetic and mechanical power flow; constraints imposed by modal dynamics require a separate mechanical port for each vibration mode. Values were assigned to bond graph parameters in a non-empirical manner: solely from theory and handbook data. State equations and transfer functions were extracted from the bond graph. For audio range operation, theory (the bond graph model) compared well with experiment (measurements taken on a magnetostrictive actuator designed and built by the author).

2000 ◽  
Vol 122 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Jongbaeg Kim ◽  
Michael D. Bryant

An existing bond graph of a squirrel cage induction motor was modified to make the bond graph physically more representative. The intent was to form a one-to-one correspondence between motor components and bond graph elements. Components explicitly represented include the stator coils, the squirrel cage rotor bars, and the magnetic flux routing section. The final bond graph spans electrical, magnetic, and mechanical energy domains, and contains common motor faults. From this bond graph. state equations were extracted and simulations performed. Simulated were the response of healthy motors, and motors with shorted stator coils and broken rotor bars. [S0022-0434(00)01203-X]


Author(s):  
W Borutzky ◽  
J Granda

Multidisciplinary systems are described most suitably by bond graphs. In order to determine unnormalized frequency domain sensitivities in symbolic form, this paper proposes to construct in a systematic manner a bond graph from another bond graph, which is called the associated incremental bond graph in this paper. Contrary to other approaches reported in the literature the variables at the bonds of the incremental bond graph are not sensitivities but variations (incremental changes) in the power variables from their nominal values due to parameter changes. Thus their product is power. For linear elements their corresponding model in the incremental bond graph also has a linear characteristic. By deriving the system equations in symbolic state space form from the incremental bond graph in the same way as they are derived from the initial bond graph, the sensitivity matrix of the system can be set up in symbolic form. Its entries are transfer functions depending on the nominal parameter values and on the nominal states and the inputs of the original model. The sensitivities can be determined automatically by the bond graph preprocessor CAMP-G and the widely used program MATLAB together with the Symbolic Toolbox for symbolic mathematical calculation. No particular program is needed for the approach proposed. The initial bond graph model may be non-linear and may contain controlled sources and multiport elements. In that case the sensitivity model is linear time variant and must be solved in the time domain. The rationale and the generality of the proposed approach are presented. For illustration purposes a mechatronic example system, a load positioned by a constant-excitation d.c. motor, is presented and sensitivities are determined in symbolic form by means of CAMP-G/MATLAB.


2010 ◽  
Vol 44-47 ◽  
pp. 1703-1707
Author(s):  
Chao Lin ◽  
Xin Hong Su ◽  
Da Tong Qin ◽  
Song Song Yu

The dual-drive system to be used in the tunnel boring machine (TBM) is a new kind of high-power planetary transmission system. On the basis of the system’s transmission theory and the bond graph principle, the bond graph model of the dual drive transmission system is established and then the state equations are deduced. Based on this model, dynamic performance of the system is simulated by means of MATLAB/Simulink and the dynamic response curves of the speed and torques are acquired. The simulation response illustrates that the bond graph model of dual drive transmission systems is accurate. In addition this system is suitable for three types of TBM and can satisfy the requirements of dramatic changes of load in the running of TBM.


2012 ◽  
Vol 433-440 ◽  
pp. 7324-7332
Author(s):  
Shi Feng Hu ◽  
Shi Jian Zhu ◽  
Qi Wei He ◽  
Jing Jun Lou ◽  
Xiang Rong Xie

The development of an new method for formulation of transduction or input and output representation for a giant magnetostrictive actuator (GMA) is presented. The transduction model is built through the application of a bond graph modeling approach which includes the mechanical dynamics and the electro-magneto-mechanical interaction of the actuator. Simulation and experiment behavior correlation are also presented. The bond graph model allows for in-depth investigation of dynamic behavior of GMA, such as energy conversion, output displacement or force and so on.


Author(s):  
Tulga Ersal ◽  
Hosam K. Fathy ◽  
Jeffrey L. Stein

The modular modeling paradigm facilitates the efficient building, verification and handling of complex system models by assembling them from general-purpose component models. A drawback of this paradigm, however, is that the assembled system models may have excessively complex structures for certain purposes due to the amount of detail of the component models, which is introduced to promote modularity. This work presents a domain-independent structural simplification technique that can detect such unnecessary complexities in a modular bond-graph model and eliminate them from the model without compromising accuracy. To this end, the activity concept in the literature is extended to define "inactivity" for junction elements, and simplification is obtained by detecting and eliminating inactive junction elements and by propagating the implications. It is shown that this simple idea can result in models that are conceptually and computationally more efficient. Some subtleties associated with this approach are highlighted.


1995 ◽  
Vol 117 (3) ◽  
pp. 401-410 ◽  
Author(s):  
A. A. Zeid ◽  
J. L. Overholt

This paper develops a bond graph-based formalism for modeling multibody systems in a singularly perturbed formulation. As opposed to classical multibody modeling methods, the singularly perturbed formulation is explicit, which makes it suitable for modular simulation. Kinematic joints that couple rigid bodies are described by a set of differential equations with an order of magnitude smaller time scale than that of the system. Singularly perturbed models of joints can be used to investigate nonlinear properties of joints, such as clearance and friction. The main restriction of this approach is that the simulation may need to be computed using 64 bits precision because of the two-time scale nature of the solution. The formalism is based on developing bond graph models of an elementary set of graphical velocity-based constraint functions. This set can be used to construct bond graphs of any type of mechanical joint. Here, this set is used to develop bond graphs of several joints used in multibody systems and spatial mechanisms. Complex models of multibody systems may now be built by graphically concatenating bond graphs of rigid bodies and bond graphs of joints. The dynamic equations of the system are automatically generated from the resulting bond graph model. The dynamic equation derived from the bond graph are in explicit state space form, ready for numerical integration, and exclude the computationally intensive terms that arise from acceleration analysis.


1999 ◽  
Vol 121 (1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Y. Huang ◽  
K. Youcef-Toumi

Zero dynamics is an important feature in system analysis and controller design. Its behavior plays a major role in determining the performance limits of certain feedback systems. Since the intrinsic zero dynamics can not be influenced by feedback compensation, it is important to design physical systems so that they possess desired zero dynamics. However, the calculation of the zero dynamics is usually complicated, especially if a form which is closely related to the physical system and suitable for design is required. In this paper, a method is proposed to derive the zero dynamics of physical systems from bond graph models. This method incorporates the definition of zero dynamics in the differential geometric approach and the causality manipulation in the bond graph representation. By doing so, the state equations of the zero dynamics can be easily obtained. The system elements which are responsible for the zero dynamics can be identified. In addition, if isolated subsystems which exhibit the zero dynamics exist, they can be found. Thus, the design of physical systems including the consideration of the zero dynamics become straightforward. This approach is generalized for MIMO systems in the Part II paper.


2010 ◽  
Vol 129-131 ◽  
pp. 213-217 ◽  
Author(s):  
Jun Peng Shao ◽  
Jian Ying Li ◽  
Zhong Wen Wang ◽  
Gui Hua Han

The model of flow press servo valve is built in this paper, during building the model, the author emphatically analyses the flow equation and force (torque) balance equation of every part of the valve, at the same time, all levels sub-models are organic combined according to power flow direction, signal flow direction of elements and causality, then we get the bond graph model of the flow press servo from this way. Adapting flow press servo valve and flow servo valve to concurrently control load system has its great advantage in restraining the superfluous force of the electro-hydraulic load simulator system, the performance such as load precision of system is enhanced greatly according to this method. Based on the system bond graph model, and by comparing the simulation curves and experiment curves, we can know that the simulation curves basically tally with the experiment curves, the bond graph models are validated right, which are flow press servo valve bond graph model and double valves concurrently control the electro-hydraulic load simulator system bond graph model. Simultaneity, the bond graph models in this paper take on generality, they are can be used on other aspects, such as other valve controlling cylinder system simulation, design and control strategy theory research.


1977 ◽  
Vol 99 (4) ◽  
pp. 300-306 ◽  
Author(s):  
Dean Karnopp

The standard means of imposing causality to extract state equations for bond graph models of physical systems can be inconvenient when algebraic loops and derivative causality in combination with nonlinear constraints are present. This paper presents an alternative means of writing system differential equations using energy and coenergy state functions and Lagrange’s equations. For certain types of systems, particularly mechanical and electromechanical systems, this indirect means of finding state equations turns out to be very convenient. In this technique, causality is used in a new way to establish generalized coordinates and generalized efforts for nonconservative elements. Finally, it is shown that in some cases in which a Lagrangian can be written by inspection for a complex mechanism, a detailed bond graph for this component is unnecessary and yet the equations of the mechanism can be easily coupled to the bond graph equations for the remainder of the system.


Author(s):  
Shangjun Ma ◽  
Tao Zhang ◽  
Geng Liu ◽  
Jipeng He

To reveal the dynamic characteristics of planetary roller screw mechanism, a dynamic model of planetary roller screw mechanism is developed in this study, which is based on the bond graph theory that accounts for friction, axial clearance, and screw stiffness. First, the bond graph models of friction, axial clearance, and load distribution are presented. Then, a bond graph model of the entire planetary roller screw mechanism for the dynamic analysis is established using the 20-sim software package, and the dynamic equations are solved using the Runge–Kutta–Fehlberg algorithm. Finally, the axial speed, axial acceleration, and contact force of the components are derived under different axial loads and with different axial clearances. Furthermore, the dynamic friction characteristics at different angular velocities of the screw and the dynamic stiffnesses for different axial clearances are also obtained. The results can provide a theoretical basis for planetary roller screw mechanism design with consideration of dynamic characteristics.


Sign in / Sign up

Export Citation Format

Share Document