Position and Force Control of Two CRS A460 Robots Manipulating a Flexible Sheet: Theory and Experiment

1998 ◽  
Vol 120 (4) ◽  
pp. 529-533 ◽  
Author(s):  
Dong Sun ◽  
James K. Mills

It is verified in theory and experiment that through proper design of the control gains, the simple PD position feedback can control a flexible sheet manipulated by two industrial robots to a desired position while regulating its deformations at the contacts to zero. The offsets of all static deformations of the sheet with reference to the original positions decay to zero. A hybrid controller is further developed to control the motion of the sheet as well as its interactions with the manipulators by adding a force feedforward term to the PD scheme. This is the first time that conventional PD control has been shown to be applicable for use in the manipulation of flexible payload.

2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Author(s):  
Guglielmo Federico Antonio Brunetti ◽  
Samuele De Bartolo ◽  
Carmine Fallico ◽  
Ferdinando Frega ◽  
Maria Fernanda Rivera Velásquez ◽  
...  

AbstractThe spatial variability of the aquifers' hydraulic properties can be satisfactorily described by means of scaling laws. The latter enable one to relate the small (typically laboratory) scale to the larger (typically formation/regional) ones, therefore leading de facto to an upscaling procedure. In the present study, we are concerned with the spatial variability of the hydraulic conductivity K into a strongly heterogeneous porous formation. A strategy, allowing one to identify correctly the single/multiple scaling of K, is applied for the first time to a large caisson, where the medium was packed. In particular, we show how to identify the various scaling ranges with special emphasis on the determination of the related cut-off limits. Finally, we illustrate how the heterogeneity enhances with the increasing scale of observation, by identifying the proper law accounting for the transition from the laboratory to the field scale. Results of the present study are of paramount utility for the proper design of pumping tests in formations where the degree of spatial variability of the hydraulic conductivity does not allow regarding them as “weakly heterogeneous”, as well as for the study of dispersion mechanisms.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Rodrigo Pérez Ubeda ◽  
Santiago C. Gutiérrez Rubert ◽  
Ranko Zotovic Stanisic ◽  
Ángel Perles Ivars

The rise of collaborative robots urges the consideration of them for different industrial tasks such as sanding. In this context, the purpose of this article is to demonstrate the feasibility of using collaborative robots in processing operations, such as orbital sanding. For the demonstration, the tools and working conditions have been adjusted to the capacity of the robot. Materials with different characteristics have been selected, such as aluminium, steel, brass, wood, and plastic. An inner/outer control loop strategy has been used, complementing the robot’s motion control with an outer force control loop. After carrying out an explanatory design of experiments, it was observed that it is possible to perform the operation in all materials, without destabilising the control, with a mean force error of 0.32%. Compared with industrial robots, collaborative ones can perform the same sanding task with similar results. An important outcome is that unlike what might be thought, an increase in the applied force does not guarantee a better finish. In fact, an increase in the feed rate does not produce significant variation in the finish—less than 0.02 µm; therefore, the process is in a “saturation state” and it is possible to increase the feed rate to increase productivity.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method’s primary purpose is to avoid force vibration in the contact phase and maintain force–tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ran Hao ◽  
E. Erdem Tuna ◽  
M. Cenk Çavuşoğlu

Abstract Contact force quality is one of the most critical factors for safe and effective lesion formation during catheter based atrial fibrillation ablation procedures. In this paper, the contact stability and contact safety of a novel magnetic resonance imaging (MRI)-actuated robotic cardiac ablation catheter subject to surface motion disturbances are studied. First, a quasi-static contact force optimization algorithm, which calculates the actuation needed to achieve a desired contact force at an instantaneous tissue surface configuration is introduced. This algorithm is then generalized using a least-squares formulation to optimize the contact stability and safety over a prediction horizon for a given estimated heart motion trajectory. Four contact force control schemes are proposed based on these algorithms. The first proposed force control scheme employs instantaneous heart position feedback. The second control scheme applies a constant actuation level using a quasi-periodic heart motion prediction. The third and the last contact force control schemes employ a generalized adaptive filter-based heart motion prediction, where the former uses the predicted instantaneous position feedback, and the latter is a receding horizon controller. The performance of the proposed control schemes is compared and evaluated in a simulation environment.


2017 ◽  
Vol 19 (37) ◽  
pp. 25298-25308
Author(s):  
Andreas Erlebach ◽  
Katrin Thieme ◽  
Marek Sierka ◽  
Christian Rüssel

Solid solutions of SiO2and B2O3in Li2O·2SiO2are synthesized and characterized for the first time by calculations and experiments.


Author(s):  
Mehmet R. Simsek ◽  
Onur Bilgen

The dynamic behavior of a Duffing-Holmes oscillator subjected to a Hybrid Position Feedback (HPF) controller is investigated. The so-called hybrid controller is a combination of two controllers, namely, the Negative Position Feedback (NPF), and Positive Position Feedback (PPF) controllers. The controller uses the inertial properties of the structure around its stable positions to achieve large displacements by effectively destabilizing the system using an NPF controller. Once the unstable equilibrium is reached, the system is stabilized to the target stable equilibrium using the PPF controller. This dynamic switch of controllers creates the HPF control concept, which specifically enables the monotonic and controlled transition between the states of bistable systems such as the Duffing-Holmes oscillator. This concept can be implemented to morphing structures such as bistable wings, wind turbine blades, and deployable structures. In this paper, a detailed response type and stability analyses of a Duffing-Holmes oscillator controlled by the HPF controller are presented. First, the response types for the components of the HPF, NPF and PPF controllers are analyzed individually. For the NPF controller, three response types are defined. These are intra-well, single cross-well, and multiple cross-well response types describing the possible responses. For the PPF controller, only two response types are defined. These are stabilized and not-stabilized, since the role of the PPF controller is to generate an attractor to the desired stable equilibrium. Finally, the complete HPF controller is analyzed in terms of response type. In this case, three response types are defined: intra-well, single cross-well and multiple cross-well. The paper summarizes all the response types with detailed analyses, and recommends controller parameters for best control performance.


Sign in / Sign up

Export Citation Format

Share Document