Economic Scales for First-Generation Biomass-Gasifier/Gas Turbine Combined Cycles Fueled From Energy Plantations

1997 ◽  
Vol 119 (2) ◽  
pp. 285-290 ◽  
Author(s):  
E. D. Larson ◽  
C. I. Marrison

This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The “optimum” capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230–320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt.

Author(s):  
Eric D. Larson ◽  
Christopher I. Marrison

This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology are likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The “optimum” capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230–320 MWs for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt.


Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


2000 ◽  
Author(s):  
Duck-Jin Kim ◽  
Hyun-Soo Lee ◽  
Ho-Young Kwak ◽  
Jae-Ho Hong

Abstract Exegetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy into thermal and mechanical exergy. A unit cost was assigned to a specific exergy stream of matter, regardless of its condition or state in this analysis. The calculated costs of electricity were almost same within 0.5% as those obtained by the thermoeconomic analysis with decomposition of the exergy stream for the combined cycle plant, which produces the same kind of product. Such outcome indicated that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously. However this is true for the gas-turbine cogeneration plant which produces different kinds of products, electricity and steam whose unit costs are dominantly affected by the mechanical and thermal exergy respectively.


2021 ◽  
Author(s):  
Pugalenthi Nanadagopal ◽  
Matthias Duerr ◽  
Ole Fahrendorf ◽  
Dan Haid ◽  
Hubert Paprotna

Abstract Gas turbine-based combine cycle (GT-CC) economic evaluation is very important to bring together own equipment manufacturing companies (OEM’s) and power plant owners. The fuel cost & cost of electricity play the major role in economic evaluation which drives the decision during the bidding. The first portion of this paper encompasses the different cost analysis methods like Net Present Value (NPV), Internal Rate of Return (IRR), Levelized Cost of Electricity (LCOE) and Pay Back Period (PBP) for different fuel costs and electricity prices. The second portion of the paper covers the delta cost benefits due to improvement in the combined cycle degradation GT-CC operators or customers are looking for the opportunities to control and minimize the degradation of the gas turbine power plant which directly impact the profitability. The customer or operator always monitor the plant performance to understand the life cost impact on performance degradation. This paper will help the customers & GT-CC OEM companies to focus on different area to reduce the unit cost of generating electricity, decide to move forward with the project during the proposal and improve the business at various regions based on fuel cost and global geographical political situations. Also, the reader can digest the benefits of improved degradation curve over the normal curve.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
Ste´phanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with pre-combustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown POX reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared to conventional solvent-based separation and benefit from the high pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short term and long term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided. This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


Author(s):  
Rafael Guédez ◽  
James Spelling ◽  
Björn Laumert

The present work deals with the thermoeconomic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an in house simulation tool that simultaneously encompasses meteorological, demand and price data. A wide range of possible designs are evaluated in order to show the trade-offs between the objectives of achieving sustainable and economically competitive designs. Results show that optimal designs of the novel concept are a promising cost-effective hybrid option that can successfully fulfill both the roles of a gas peaker plant and a baseload solar power plant in a more effective manner. Moreover, designs are also compared against conventional combined cycle gas turbine power plants and it is shown that, under specific peaking operating strategies, the innovative concept can not only perform better from an environmental standpoint but also economically.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and same technology as defined by reliability, availability and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more baseloaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

The construction of the first generation of commercial hybrid solar gas-turbine power plants will present the designer with a large number of choices. To assist decision making, a thermoeconomic study has been performed for three different power plant configurations, namely, simple- and combined-cycles along with a simple-cycle with the addition of thermal energy storage. Multi-objective optimization has been used to identify Pareto-optimal designs and highlight the trade-offs between minimizing investment costs and minimizing specific CO2 emissions. The solar hybrid combined-cycle power plant provides a 60% reduction in electricity cost compared to parabolic trough power plants at annual solar shares up to 20%. The storage integrated designs can achieve much higher solar shares and provide a 7–13% reduction in electricity costs at annual solar shares up to 90%. At the same time, the water consumption of the solar gas-turbine systems is significantly lower than conventional steam-cycle based solar power plants.


Author(s):  
Rafael Guédez ◽  
James Spelling ◽  
Björn Laumert

The present work deals with the thermo-economic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an in house simulation tool that simultaneously encompasses meteorological, demand and price data. A wide range of possible designs are evaluated in order to show the trade-offs between the objectives of achieving sustainable and economically competitive designs. Results show that optimal designs of the novel concept are a promising cost-effective hybrid option that can successfully fulfill both the roles of a gas peaker plant and a baseload solar power plant in a more effective manner. Moreover, designs are also compared against conventional combined cycle gas turbine (CCGT) power plants and it is shown that, under specific peaking operating strategies (P-OSs), the innovative concept cannot only perform better from an environmental standpoint but also economically.


Sign in / Sign up

Export Citation Format

Share Document