Cinema PIV and Its Application to Impinging Vortex Systems

1999 ◽  
Vol 121 (4) ◽  
pp. 720-724 ◽  
Author(s):  
J.-C. Lin ◽  
D. Rockwell

An integrated cinema PIV-pressure measurement system allows detailed insight into impinging vortex systems. It employs a high framing rate camera in conjunction with a scanning-laser version of high-image-density particle image velocimetry, thereby generating space-time representations of the flow. Simultaneously, instantaneous surface pressures are acquired. This approach allows the instantaneous velocity and vorticity fields to be related to the induced loading. The instantaneous structure of vortex systems arising from an initially turbulent jet impinging upon an edge and an initially turbulent shear layer past a cavity are quantitatively characterized for the first time. In addition, distinctive mechanisms of vortex-wedge and vortex-corner interactions are related to the occurrence of peak values of instantaneous surface pressure.

Author(s):  
A Yasar ◽  
B Sahin ◽  
H Akilli ◽  
K Aydin

In this study, the characteristics of flow emerging from the inlet of the intake port in the cylinder were investigated experimentally. A particle image velocimetry (PIV) technique was used to measure the velocity distribution in order to observe and analyse the flow behaviour. High-image-density PIV provided acquisition of patterns of instantaneous and averaged vorticity and velocity, revealing the detail of the flow characteristics in the cylinder cavity. With this measuring technique, it is possible to study the effect of intake valve geometry on the flow behaviours. The results showed that the flow structure changed substantially along the cylinder stroke due to the geometry of the intake valve port.


2004 ◽  
Vol 2 (1) ◽  
pp. 70-80 ◽  
Author(s):  
J. Martin ◽  
P. Oshkai ◽  
N. Djilali

Flow through an experimental model of a U-shaped fuel cell channel is used to investigate the fluid dynamic phenomena that occur within serpentine reactant transport channels of fuel cells. Achieving effective mixing within these channels can significantly improve the performance of the fuel cell and proper understanding and characterization of the underlying fluid dynamics is required. Classes of vortex formation within a U-shaped channel of square cross section are characterized using high-image-density particle image velocimetry. A range of Reynolds numbers, 109⩽Re⩽872, corresponding to flow rates encountered in a fuel cell operating at low to medium current densities is investigated. The flow fields corresponding to two perpendicular cross sections of the channel are characterized in terms of the instantaneous and time-averaged representations of the velocity, streamline topology, and vorticity contours. The critical Reynolds number necessary for the onset of instability is determined, and the two perpendicular flow planes are compared in terms of absolute and averaged velocity values as well as Reynolds stress correlations. Generally, the flow undergoes a transition to a different regime when two recirculation zones, which originally develop in the U-bend region, merge into one separation region. This transition corresponds to generation of additional vortices in the secondary flow plane.


2018 ◽  
Vol 837 ◽  
pp. 729-764 ◽  
Author(s):  
Yang Xu ◽  
Jin-Jun Wang ◽  
Li-Hao Feng ◽  
Guo-Sheng He ◽  
Zhong-Yi Wang

For the first time, an experiment has been conducted to investigate synthetic jet laminar vortex rings impinging onto porous walls with different geometries by time-resolved particle image velocimetry. The geometry of the porous wall is changed by varying the hole diameter on the wall (from 1.0 mm to 3.0 mm) when surface porosity is kept constant ($\unicode[STIX]{x1D719}=75\,\%$). The finite-time Lyapunov exponent and phase-averaged vorticity field derived from particle image velocimetry data are presented to reveal the evolution of the vortical structures. A mechanism associated with vorticity cancellation is proposed to explain the formation of downstream transmitted vortex rings; and both the vortex ring trajectory and the time-mean flow feature are compared between different cases. It is found that the hole diameter significantly influences the evolution of the flow structures on both the upstream and downstream sides of the porous wall. In particular, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), the transmitted finger-type jets will reorganize into a well-formed transmitted vortex ring in the downstream flow. However, for the case of a large hole diameter of $d_{h}^{\ast }=0.20$, the transmitted vortex ring is not well formed because of insufficient vorticity cancellation. Additionally, the residual vorticity gradually evolves into discrete jet-like structures downstream, which further weaken the intensity of the transmitted vortex ring. Consequently, the transmitted flow structures for the $d_{h}^{\ast }=0.20$ case would lose coherence more easily (or probably even transition to turbulence), resulting in a faster decay of the axial velocity and stronger entrainment of the transmitted jet. For all porous wall cases, the velocity profile of the transmitted jet exhibits self-similar behaviour in the far field ($z/D_{0}\geqslant 6.03$), which agrees well with the velocity distribution of free synthetic jets. With the help of the control-volume approach, the time-mean drag of the porous wall is evaluated experimentally for the first time. It is shown that the porous wall drag increases with the decrease in the hole diameter. Moreover, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), it appears that the porous wall drag mainly derives from the viscous effect. However, as $d_{h}^{\ast }$ increases to 0.20, the form drag associated with the porous wall geometry becomes significant.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
James Lindsay Baker ◽  
Itai Einav

Abstract Particle image velocimetry (PIV) is a powerful image correlation method for measuring bulk velocity fields of flowing media. It typically uses optical images, representing quasi-two-dimensional experimental slices, to measure a single velocity value at each in-plane position. However, projection-based imaging methods, such as x-ray radiography or shadowgraph imaging, encode additional out-of-plane information that regular PIV is unable to capture. Here, we introduce a new image analysis method, named deep velocimetry, that goes beyond established PIV methods and is capable of extracting full velocity distributions from projected images. The method involves solving a deconvolution inverse problem to recover the distribution at each in-plane position, and is validated using artificial data as well as controlled laboratory x-ray experiments. The additional velocity information delivered by deep velocimetry could provide new insight into a range of fluid and granular flows where out-of-plane variation is significant. Graphic abstract


1993 ◽  
Vol 14 (3) ◽  
pp. 181-192 ◽  
Author(s):  
D. Rockwell ◽  
C. Magness ◽  
J. Towfighi ◽  
O. Akin ◽  
T. Corcoran

Sign in / Sign up

Export Citation Format

Share Document