Steady-State Reliability Analysis of Repairable Systems Subject to System Modifications

1999 ◽  
Vol 121 (4) ◽  
pp. 614-621 ◽  
Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Environmentally conscious design is approached through analysis and further development of a reliability model that facilitates design for reuse of products. Many reliability models may not he suitable for describing systems that undergo repairs performed during remanufacture and maintenance since they do not allow for the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system modifications during repair are derived. These reliability indices that describe a population of repairable systems are theoretically proven to reach steady state, supporting the simulation results of the model. This model can be used to estimate life-cycle replacement requirements for systems that are remanufactured, thereby facilitating decisions during system design and use. An example illustrates the application of the model to a relevant industry.

Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


2010 ◽  
Vol 118-120 ◽  
pp. 342-347
Author(s):  
Zhi Yu Jia ◽  
Rui Kang ◽  
Li Chao Wang ◽  
Nai Chao Wang

Based on some practical problems in maintenance, a new model for K-out-of-N Markov repairable systems is introduced in this paper. The model focuses on that repair times that are sufficiently short (less than some threshold value) do not affect the system operation. We can say that such a repair time is omitted from the downtime record, and the system can be considered as being operating during this repair time. A model is built in which the threshold value is regarded as a constant at first. And then the model is generalized to allow the threshold value to be a non-negative random variable. Both instantaneous availability and steady-state availability are calculated for these new models as reliability indices. Some numerical examples are presented to verify the validity of these models.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


Author(s):  
Zhiyong Liu ◽  
Zhoumei Tan ◽  
Fan Bai

AbstractTo improve the transmission efficiency and facilitate the realization of the scheme, an adaptive modulation (AM) scheme based on the steady-state mean square error (SMSE) of blind equalization is proposed. In this scheme, the blind equalization is adopted and no training sequence is required. The adaptive modulation is implemented based on the SMSE of blind equalization. The channel state information doesn’t need to be assumed to know. To better realize the adjustment of modulation mode, the polynomial fitting is used to revise the estimated SNR based on the SMSE. In addition, we also adopted the adjustable tap-length blind equalization detector to obtain the SMSE, which can adaptively adjust the tap-length according to the specific underwater channel profile, and thus achieve better SMSE performance. Simulation results validate the feasibility of the proposed approaches. Simulation results also show the advantages of the proposed scheme against existing counterparts.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2139
Author(s):  
Shanxiao Du ◽  
Jichao Hong ◽  
Hongxin Zhang ◽  
Qinghai Zhao ◽  
Tiezhu Zhang ◽  
...  

Reciprocating piston pumps are widely used in various fields, such as automobiles, ships, aviation, and engineering machinery. Conventional reciprocating piston pump distributing flow (RPPDF) systems have the disadvantages of a loose structure and low volumetric efficiency, as well as affected positively by the operating frequency. In this paper, a novel rotating-sleeve distributing flow (RSDF) system is presented for bridging these drawbacks, as well as structurally improved to overcome the inoperable and challenging problems in oil intake and discharge found in the experiment. Moreover, the Singhal cavitation model specifically for the RSDF system and four-cam groove profiles (CGPs) is established. To find the most suitable CGP to reduce the RSDF’s cavitation, the cavitation of the RSDF system was investigated, combining with simulations by taking into account the gap among the rotating sleeve, the pump chamber, and experiments on four presented CGPs. Simulation results based on vapor volume fraction, cavitation ratio, and volumetric efficiency show that the linear profile’s cavitation is the weakest. Finally, the correctness of the simulation is verified through orthogonal experiments. This research is of great significance to the further development of the RSDF system; more important, it has great potential to promote the reform of the RPPDF method.


2011 ◽  
Vol 403-408 ◽  
pp. 4880-4887
Author(s):  
Sassan Azadi

This research work was devoted to present a novel adaptive controller which uses two negative stable feedbacks with a positive unstable positive feedback. The positive feedback causes the plant to do the break, therefore reaching the desired trajectory with tiny overshoots. However, the two other negative feedback gains controls the plant in two other sides of positive feedback, making the system to be stable, and controlling the steady-state, and transient responses. This controller was performed for PUMA-560 trajectory planning, and a comparison was made with a fuzzy controller. The fuzzy controller parameters were obtained according to the PSO technique. The simulation results shows that the novel adaptive controller, having just three parameters, can perform well, and can be a good substitute for many other controllers for complex systems such as robotic path planning.


Sign in / Sign up

Export Citation Format

Share Document