Utilizing an Adaptive Controller (Azadi Controller) for Trajectory Planning of PUMA 560 Robot

2011 ◽  
Vol 403-408 ◽  
pp. 4880-4887
Author(s):  
Sassan Azadi

This research work was devoted to present a novel adaptive controller which uses two negative stable feedbacks with a positive unstable positive feedback. The positive feedback causes the plant to do the break, therefore reaching the desired trajectory with tiny overshoots. However, the two other negative feedback gains controls the plant in two other sides of positive feedback, making the system to be stable, and controlling the steady-state, and transient responses. This controller was performed for PUMA-560 trajectory planning, and a comparison was made with a fuzzy controller. The fuzzy controller parameters were obtained according to the PSO technique. The simulation results shows that the novel adaptive controller, having just three parameters, can perform well, and can be a good substitute for many other controllers for complex systems such as robotic path planning.

2016 ◽  
Vol 26 (4) ◽  
pp. 471-495 ◽  
Author(s):  
Sundarapandian Vaidyanathan

AbstractThis research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1= 3.1575, L2= 0.3035, L3= 0 and L4= −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY= 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work.


2016 ◽  
Vol 26 (3) ◽  
pp. 311-338 ◽  
Author(s):  
Sundarapandian Vaidyanathan

AbstractA hyperjerk system is a dynamical system, which is modelled by annth order ordinary differential equation withn≥ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system ofnfirst order ordinary differential equations withn≥ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained asL1= 0.14219,L2= 0.04605,L3= 0 andL4= −1.39267. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained asDKY= 3.1348. Next, an adaptive controller is designed via backstepping control method to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive controller is designed via backstepping control method to achieve global synchronization of the identical novel hyperjerk systems with three unknown parameters. MATLAB simulations are shown to illustrate all the main results derived in this research work on a novel hyperjerk system.


Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 998
Author(s):  
Roozbeh Sadeghian Broujeny ◽  
Kurosh Madani ◽  
Abdennasser Chebira ◽  
Veronique Amarger ◽  
Laurent Hurtard

Most already advanced developed heating control systems remain either in a prototype state (because of their relatively complex implementation requirements) or require very specific technologies not implementable in most existing buildings. On the other hand, the above-mentioned analysis has also pointed out that most smart building energy management systems deploy quite very basic heating control strategies limited to quite simplistic predesigned use-case scenarios. In the present paper, we propose a heating control strategy taking advantage of the overall identification of the living space by taking advantage of the consideration of the living space users’ presence as additional thermal sources. To handle this, an adaptive controller for the operation of heating transmitters on the basis of soft computing techniques by taking into account the diverse range of occupants in the heating chain is introduced. The strategy of the controller is constructed on a basis of the modeling heating dynamics of living spaces by considering occupants as an additional heating source. The proposed approach for modeling the heating dynamics of living spaces is on the basis of time series prediction by a multilayer perceptron neural network, and the controlling strategy regarding the heating controller takes advantage of a Fuzzy Inference System with the Takagi-Sugeno model. The proposed approach has been implemented for facing the dynamic heating conduct of a real five-floor building’s living spaces located at Senart Campus of University Paris-Est Créteil, taking into account the occupants of spaces in the control chain. The obtained results assessing the efficiency and adaptive functionality of the investigated fuzzy controller designed model-based approach are reported and discussed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


Author(s):  
Zhiyong Liu ◽  
Zhoumei Tan ◽  
Fan Bai

AbstractTo improve the transmission efficiency and facilitate the realization of the scheme, an adaptive modulation (AM) scheme based on the steady-state mean square error (SMSE) of blind equalization is proposed. In this scheme, the blind equalization is adopted and no training sequence is required. The adaptive modulation is implemented based on the SMSE of blind equalization. The channel state information doesn’t need to be assumed to know. To better realize the adjustment of modulation mode, the polynomial fitting is used to revise the estimated SNR based on the SMSE. In addition, we also adopted the adjustable tap-length blind equalization detector to obtain the SMSE, which can adaptively adjust the tap-length according to the specific underwater channel profile, and thus achieve better SMSE performance. Simulation results validate the feasibility of the proposed approaches. Simulation results also show the advantages of the proposed scheme against existing counterparts.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


2000 ◽  
Author(s):  
Jeng-Yu Wang ◽  
Masayoshi Tomizuka

Abstract In this paper, a robust linear steering and differential braking controller is designed for the automated guidance of tractor-semitrailer combination vehicles using the H∞ loop-shaping methodology. Only the articulation angle, the lateral errors at the front and rear axle of the tractor, and the angular velocities of the rear wheels of the trailer or the brake line pressure signals, are assumed to be available for the synthesis of control inputs. The controller is designed to ensure the robustness to model uncertainties due to variations in vehicle longitudinal speed, road adhesion coefficient and trailer cargo load. Closed-loop simulation results show the robustness of the proposed controller and the resulting smaller lateral error at the trailer end when compared to the controller using the steering input only. More damped transient responses of articulation angle when using the steering and braking control also improve the yaw stability of the trailer.


2021 ◽  
Vol 02 (09) ◽  
pp. 8-14
Author(s):  
Aziza Komilovna Akhmedova ◽  

The article analyzes the results of the research on the representation of the aesthetic ideal through the image of the ideal hero in two national literatures. For research purposes, attention was paid to highlighting the category of the ideal hero as an expression of the author's aesthetic views. In Sinclair Lewis’s “Arrowsmith” and Pirimkul Kodirov's “The Three Roots”, the protagonists artistically reflect the authors' views on truth, virtue, and beauty. In these novels, professional ethics is described as a high noble value. The scientific novelty of the research work includes the following: in the evolution of western and eastern poetic thought, in the context of the novel genre, the skill, common and distinctive aspects of the creation of an ideal hero were revealed by synthesis of effective methods in world science with literary criteria in the history of eastern and western literary studies, in the example of Sinclair Lewis and Pirimkul Kodirov.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150020
Author(s):  
Chunyan Gao ◽  
Fangqi Chen

This study develops a general model of delayed p53 regulatory network in the DNA damage response by introducing microRNA 192-mediated positive feedback loop based on the existing research work. Through theoretical analysis and numerical simulation, we find that the delay as a bifurcation parameter can drive the p53-Mdm2 module to undergo a supercritical Hopf bifurcation, thereby producing oscillation behavior. Moreover, we demonstrate how the positive feedback loop formed by p53* and microRNA 192 (miR-192) with the feature of double-negative regulation produces oscillations. Further, a comparison is given to demonstrate that microRNA 192-mediated positive feedback loop affects the robustness of system oscillations. In addition, we show that ataxia telangiectasia mutated kinase (ATM), once activated by DNA damage, makes p53* undergo two Hopf bifurcations. These results reveal that both time delay and miR-192 play tumor suppressing roles by promoting p53 oscillation or high level expression, which will provide a perspective for promoting the development of anti-cancer drugs by targeting miR-192 and time delay.


Sign in / Sign up

Export Citation Format

Share Document