Analysis of Oil-Film Pressure Distribution in Porous Journal Bearings Under Hydrodynamic Lubrication Conditions Using an Improved Boundary Condition

1997 ◽  
Vol 119 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Satoru Kaneko ◽  
Yuji Hashimoto ◽  
Hiroki I

Pressure distributions in the oil film of a porous journal bearing are investigated theoretically and experimentally under hydrodynamic lubrication conditions. The circumferential boundary condition for the oil-film pressure is obtained by applying an integral momentum equation to the oil-film region in the bearing clearance. The oil-film pressure distributions are numerically solved using this momentum equation and taking into consideration the balance between oil fed into the clearance and that lost from it. The present analysis shows the occurrence of a negative film pressure before the trailing end of the oil-film region. The experimental results confirm the existence of this negative film pressure. Furthermore, the angular position of the trailing end of the oil-film region obtained in the present analysis moves toward the downstream region, yielding better agreement with the measured and calculated film regions than was found in our previous analysis based on the quasi-Reynolds boundary condition.

2020 ◽  
Vol 72 (7) ◽  
pp. 961-967 ◽  
Author(s):  
Ka Han ◽  
Junning Li ◽  
Qian Wang ◽  
Wuge Chen ◽  
Jiafan Xue

Purpose The purpose of this study is to reveal the tribological performance of the textured rolling bearing. Design/methodology/approach In the present study, the oil film pressure distribution and load capacity analysis method are established, which integrate the micro-texture model and Hydrodynamic lubrication (HL) methods. The tribological performances of the textured rolling bearing under the various working condition, texture dimension and texture type are investigated systematically. Findings The results show that the oil film load capacity increases with the increase in the texture size. As the texture depth increases, the oil film load capacity increases first and then decreases, and then the load capacity is the largest at the texture depth range of 3 to 5 µm. In addition, the oil film load capacity of the matching pairs, such as Si4N3-Si4N3, GCr15- Si4N3 and GCr15-GCr15 are compared; the results show that the cases of using ceramic material can improve oil film load capacity of textured rolling bearing. Originality/value The current manuscript can be useful for supporting the reliability and life research of textured rolling bearing. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0055


1975 ◽  
Vol 97 (4) ◽  
pp. 613-615 ◽  
Author(s):  
H. D. Conway ◽  
H. C. Lee

This paper presents an analysis of the impact between a sphere and a flat surface covered by an oil film. Pressure distributions are found as functions of time for oils whose viscosities are either constant or pressure-dependent. It is believed that the increase of oil viscosity with pressure is a main cause of the deep conical dents observed experimentally.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


2016 ◽  
Vol 68 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Amit Singla ◽  
Amit Chauhan

Purpose The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing. Design/methodology/approach The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100). Findings It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity. Originality/value The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.


2013 ◽  
Vol 6 (20) ◽  
pp. 3871-3878 ◽  
Author(s):  
Diyar I. Ahmed ◽  
S. Kasolang ◽  
Basim A. Khidhir ◽  
B.F. Yousif

2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989585 ◽  
Author(s):  
Seongsu Kim ◽  
Juhwan Choi ◽  
Jin-Gyun Kim ◽  
Ryo Hatakeyama ◽  
Hiroshi Kuribara ◽  
...  

In this work, we propose a robust modeling and analysis technique of the piston-lubrication system considering fluid–structure interaction. The proposed schemes are based on combining the elastohydrodynamic analysis and multi-flexible body dynamics. In particular, multi-flexible body dynamics analysis can offer highly precise numerical results regarding nonlinear deformation of the piston skirt and cylinder bore, which can lead to more accurate results of film thickness for gaps filled with lubricant and of relative velocity of facing surfaces between the piston skirt and the cylinder block. These dynamic analysis results are also used in the elastohydrodynamic analysis to compute the oil film pressure and asperity contact pressure that are used as external forces to evaluate the dynamic motions of the flexible bodies. A series of processes are repeated to accurately predict the lubrication characteristics such as the clearance and oil film pressure. In addition, the Craig–Bampton modal reduction, which is a standard type of component mode synthesis, is employed to accelerate the computational speed. The performance of the proposed modeling schemes implemented in the RecurDyn™ multi-flexible body dynamics environment is demonstrated using a well-established numerical example, and the proposed simulation methods are also verified with the experimental results in a motor cycle engine (gasoline) which has a four cycle, single cylinder, overhead camshaft (OHC), air cooled.


Author(s):  
Zhenpeng Wu ◽  
Vanliem Nguyen ◽  
Vanquynh Le ◽  
Xuanlong Le ◽  
Vancuong Bui

The study proposes a design and optimization of textures on the surface of crankpin bearing to improve the lubrication efficiency and friction power loss (LE-FPL). A hydrodynamic lubrication model of crankpin bearing considering the impact of the external dynamic load and micro asperity contact is established. Based on the established model, the lubrication textures designed on the bearing surface are then simulated and optimized through the algorithms developed in Matlab environment and multi-objective optimization method. Increasing the oil film pressure and reducing the contact force ( Wac) in the asperity contact region, friction force ( Ff), and friction coefficient ( µ) of crankpin bearing are the objective functions to evaluate the LE-FPL. The study results indicate that the lubrication textures designed on the bearing surface have an obvious effect on improving the LE-FPL. Especially, with the optimized textures, the maximum oil film pressure is greatly increased by 44.8% while the maximum values of Wac and Ff are significantly reduced by 22% and 25%. Consequently, the lubrication textures added on the surface of crankpin bearing can greatly improve the LE-FPL.


Sign in / Sign up

Export Citation Format

Share Document