Nonisothermal Transient Flow in Natural Gas Pipeline

2008 ◽  
Vol 75 (3) ◽  
Author(s):  
M. Abbaspour ◽  
K. S. Chapman

The fully implicit finite-difference method is used to solve the continuity, momentum, and energy equations for flow within a gas pipeline. This methodology (1) incorporates the convective inertia term in the conservation of momentum equation, (2) treats the compressibility factor as a function of temperature and pressure, and (3) considers the friction factor as a function of the Reynolds number and pipe roughness. The fully implicit method representation of the equations offers the advantage of guaranteed stability for a large time step, which is very useful for gas pipeline industry. The results show that the effect of treating the gas in a nonisothermal manner is extremely necessary for pipeline flow calculation accuracies, especially for rapid transient process. It also indicates that the convective inertia term plays an important role in the gas flow analysis and cannot be neglected from the calculation.

Author(s):  
Mohammad Abbaspour ◽  
Kirby S. Chapman ◽  
Ali Keshavarz

Natural gas systems are becoming more and more complex as the usage of this energy source increase. Mathematical models are used to design, optimize, and operate increasingly complex natural gas pipeline systems. Researchers continue to develop unsteady mathematical models that focus on the unsteady nature of these systems. Many related design problems, however, could be solved using steady-state modeling. Several investigators have studied the problem of compressible fluid flow through pipelines and have developed various numerical schemes, which include the method of characteristics, finite element methods, and explicit and implicit finite difference methods. The choice partly depends on the individual requirements of the system under investigation. In this work, the fully implicit finite difference method was used to solve the continuity, momentum, energy, and equations of state for flow within a gas pipeline system. The particular solution method described in this paper does not neglect the inertia term in the conservation of momentum equation. It also considered the compressibility factor as a function of temperature and pressure, and the friction factor as a function of the Reynolds number. the fully implicit method representation of the equations offer the advantage of guaranteed stability for a large time step, which is very useful for the gas industry. The results show that the effect of treating the gas in a non-isothermal manner is extremely necessary for pipeline flow calculation accuracies, especially for rapid transient processes. The results indicate that the inertia term plays an important role in the gas flow analysis and cannot be neglected from the calculation.


Author(s):  
Haruo Terasaka ◽  
Sensuke Shimizu ◽  
Minoru Kawahara

An advanced numerical method based on the two-fluid model has been developed. The solution method presented here is an extension of the SIMPLEST scheme, a fully implicit scheme for single-phase flow analysis. It is robust and unconditionally stable, and therefore it enables us to use a very large time step size. This feature is suitable for steady and/or slow transient flow analyses. Furthermore, it enhances numerical stability during rapid transient calculations. By using this method, swirling gas-liquid flow in a steam-water separator of Boiling Water Reactors (BWRs) was calculated and the hydrodynamics characteristics were investigated for optimization.


Author(s):  
Augusto F. Nalin ◽  
Raphael I. Tsukada ◽  
Denis A. Shiguemoto ◽  
Jose R. P. Mendes ◽  
Adriane B. S. Serapiao

The discoveries of the Pre-salt oilfields have driven the development of new technologies to enable the production of the deepwater reservoirs. In this scenario, subsea pipelines play an important role. Analysis of the steady and transient flow inside the pipes should be addressed in the design, considering the variation of the fluid properties. In this context, a pipe flow simulator project has been developed to attend gas flow analysis for petroleum industry. In this project, the fluid compressibility factor (Z-factor) and the viscosity are considered function of the pressure, temperature and gas composition. The non-isothermal transient gas flow were calculated using the Method of Characteristics (MOC). The results shown the difference of the isothermal and non-isothermal steady state and transient flow.


2020 ◽  
Vol 7 (2) ◽  
pp. 17-26
Author(s):  
Pedro Quintela ◽  
Jean Carlos Pérez Parra ◽  
Lelly Useche Castro ◽  
Miguel Lapo Palacios

The transient flow analysis is fundamental to the simulation of natural gas process, in order to adjust the system to real operative conditions and to obtain the highest level of efficiency, compliance and reliability. The simulation of natural gas pipelines and networks requires mathematical models that describe flow properties. Some models that have been developed year after year based on the laws of fluid mechanics that govern this process, interpreted as a system of equations difficult to solve. This investigation describes the fully implicit finite volume method for natural gas pipeline flow calculation under isothermal conditions and transient regime. The simplification, discretization scheme and implementation equations are approached throughout this paper. The model was subjected to two evaluations: sinusoidal variation of the mass flow and opening-closing valve at the outlet of the pipeline, it is compared with two models: fully implicit finite difference method and method of characteristics. This method proved to be efficient in the simulations of slow and fast transients, coinciding the flow oscillations with the natural frequency of natural gas pipeline.  


Author(s):  
K. Anil Kumar ◽  
N. Balamuralikrishnan

Gas Turbine development activities have been associated with development of different pumps and its allied subsystems used for fuel supply and lubrication oil supply at different engine operating condition. 2D transient flow analysis of a Dual pump has been carried out in an environment with an adverse pressure gradient to map important parameters like pressure, velocity, mass flow and effect of slip. Three achievable close tolerances were selected and carried out the analysis. Finally identified tolerance to be maintained during manufacturing based on the analysis. A moving dynamic mesh concept was adopted because of its capability to facilitate solving transient flow problem and motion of the domain boundaries. A simulated motion control was decided based on the time step, angular velocities of gears rotation motion and coded through a User defined function (UDF) to give angular momentum. Each analysis was carried out for 180 degree of rotation. The main parameter mass flow rate was monitored for different speed and outlet pressures. A validation experimental test was carried out at one rpm thus build up a confidence in implant design synthesis to meet challenges in future.


2013 ◽  
Vol 655-657 ◽  
pp. 227-230
Author(s):  
Ying Hu ◽  
Kun Wang

This paper introduces the 3D numerical simulation of unsteady turbulent flow in the entire flow passage of a water turbine model with CFD technology. A new and available method for the design of a Francis turbine has been explored. The boundary conditions have been implemented based on the 3D averaged N-S equations. The governing equations are discreted on space by the finite volume method and on time step by the finite difference method. The 3D unsteady turbulent flow in an entire Francis turbine model is calculated successfully using the CFX-TASCflow software and RNG k-εturbulence model. Transient flow fields are simulated in the spiral case, the distributor, the runner and the draft tube. It is presented in this paper that the computer simulation of the flow fields in components of the Francis turbine at the optimum operating condition. Meanwhile, the velocity and pressure at any points in the flow fields can be obtained so as to provide the great value on the performance prediction. According to the simulating results, the flow analysis and the design experience, the design of components in a Francis turbine model can be improved and optimized. In this way, designers may decrease numbers of test and shorten the period for a model. Therefore, the cost of research and produce can be reduced.


Author(s):  
Mohammad Abbaspour ◽  
Kirby S. Chapman ◽  
Larry A. Glasgow ◽  
Zhongquan C. Zheng

Homogeneous two-phase flows are frequently encountered in a variety processes in the petroleum and gas industries. In natural gas pipelines, liquid condensation occurs due to the thermodynamic and hydrodynamic imperatives. During horizontal, concurrent gas-liquid flow in pipes, a variety of flow patterns can exist. Each pattern results from the particular manner by which the liquid and gas distribute in the pipe. The objective of this study is to simulate the non-isothermal, one-dimensional, transient homogenous two-phase flow gas pipeline system using two-fluid conservation equations. The modified Peng-Robinson equation of state is used to calculate the vapor-liquid equilibrium in multi-component natural gas to find the vapor and liquid compressibility factors. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculation, making the algorithm capable of handling retrograde condensation. The liquid droplets are assumed to be spheres of uniform size, evenly dispersed throughout the gas phase. The method of solution is the fully implicit finite difference method. This method is stable for gas pipeline simulations when using a large time step and therefore minimizes the computation time. The algorithm used to solve the nonlinear finite-difference thermo-fluid equations for two phase flow through a pipe is based on the Newton-Raphson method. The results show that the liquid condensate holdup is a strong function of temperature, pressure, mass flow rate, and mixture composition. Also, the fully implicit method has advantages, such as the guaranteed stability for large time step, which is very useful for simulating long-term transients in natural gas pipeline systems.


Author(s):  
Haruo Terasaka ◽  
Sensuke Shimizu

An advanced numerical method based on two-fluid model of two-phase flow has been developed to simulate the swirling gas-liquid flow and the phase separation process in a Boiling Water Reactor separator. The goal is to correctly predict the performance of operating steam separator as well as new designs. The solution method present here is an extension of SIMPLEST scheme, a fully implicit scheme for single-phase flow analysis. It is robust and unconditionally stable, therefore enable us to use very large time step size. This feature is suitable for steady and/or slow transient flow analyses. Furthermore, it enhances numerical stability during rapid transient calculations. By employing this method, separator hydrodynamics around swirler were calculated.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1639
Author(s):  
Abdelkrim Aharmouch ◽  
Brahim Amaziane ◽  
Mustapha El Ossmani ◽  
Khadija Talali

We present a numerical framework for efficiently simulating seawater flow in coastal aquifers using a finite volume method. The mathematical model consists of coupled and nonlinear partial differential equations. Difficulties arise from the nonlinear structure of the system and the complexity of natural fields, which results in complex aquifer geometries and heterogeneity in the hydraulic parameters. When numerically solving such a model, due to the mentioned feature, attempts to explicitly perform the time integration result in an excessively restricted stability condition on time step. An implicit method, which calculates the flow dynamics at each time step, is needed to overcome the stability problem of the time integration and mass conservation. A fully implicit finite volume scheme is developed to discretize the coupled system that allows the use of much longer time steps than explicit schemes. We have developed and implemented this scheme in a new module in the context of the open source platform DuMu X . The accuracy and effectiveness of this new module are demonstrated through numerical investigation for simulating the displacement of the sharp interface between saltwater and freshwater in groundwater flow. Lastly, numerical results of a realistic test case are presented to prove the efficiency and the performance of the method.


2013 ◽  
Vol 729 ◽  
pp. 702-731 ◽  
Author(s):  
A. I. Ruban ◽  
M. A. Kravtsova

AbstractIn this paper we study the three-dimensional perturbations produced in a hypersonic boundary layer by a small wall roughness. The flow analysis is performed under the assumption that the Reynolds number, $R{e}_{0} = {\rho }_{\infty } {V}_{\infty } L/ {\mu }_{0} $, and Mach number, ${M}_{\infty } = {V}_{\infty } / {a}_{\infty } $, are large, but the hypersonic interaction parameter, $\chi = { M}_{\infty }^{2} R{ e}_{0}^{- 1/ 2} $, is small. Here ${V}_{\infty } $, ${\rho }_{\infty } $ and ${a}_{\infty } $ are the flow velocity, gas density and speed of sound in the free stream, ${\mu }_{0} $ is the dynamic viscosity coefficient at the ‘stagnation temperature’, and $L$ is the characteristic distance the boundary layer develops along the body surface before encountering a roughness. We choose the longitudinal and spanwise dimensions of the roughness to be $O({\chi }^{3/ 4} )$ quantities. In this case the flow field around the roughness may be described in the framework of the hypersonic viscous–inviscid interaction theory, also known as the triple-deck model. Our main interest in this paper is the nonlinear behaviour of the perturbations. We study these by means of numerical solution of the triple-deck equations, for which purpose a modification of the ‘skewed shear’ technique suggested by Smith (United Technologies Research Center Tech. Rep. 83-46, 1983) has been used. The technique requires global iterations to adjust the viscous and inviscid parts of the flow. Convergence of such iterations is known to be a major problem in viscous–inviscid calculations. In order to achieve improved stability of the method, both the momentum equation for the viscous part of the flow, and the equations describing the interaction with the flow outside the boundary layer, are treated implicitly in this study. The calculations confirm the fact that in this sort of flow the perturbations are capable of propagating upstream in the boundary layer, resulting in a perturbation field which surrounds the roughness on all sides. We found that the perturbations decay rather fast with the distance from the roughness everywhere except in the wake behind the roughness. We found that if the height of the roughness is small, then the perturbations also decay in the wake, though much more slowly than outside the wake. However, if the roughness height exceeds some critical value, then two symmetric counter-rotating vortices form in the wake. They appear to support themselves and grow as the distance from the roughness increases.


Sign in / Sign up

Export Citation Format

Share Document