scholarly journals Unsteady Flow Field Due to Nozzle Wake Interaction With the Rotor in an Axial Flow Turbine: Part II—Rotor Exit Flow Field

1997 ◽  
Vol 119 (2) ◽  
pp. 214-224 ◽  
Author(s):  
M. A. Zaccaria ◽  
B. Lakshminarayana

The two-dimensional steady and unsteady flow field at midspan in a turbine rotor has been investigated experimentally using an LDV with an emphasis on the interaction of the nozzle wake with the rotor flow field. The velocity measurements are decomposed into a time-averaged velocity, a periodic velocity component, and an unresolved velocity component. The results in the rotor passage were presented in Part I. The flow field downstream of the rotor is presented in this paper. The rotor wake profiles and their decay characteristics were analyzed. Correlations are presented that match the decay of the various wake properties. The rotor wake velocity defect decays rapidly in the trailing edge region, becoming less rapid in the near and far wake regions. The rotor wake semi-wake width increases rapidly in the trailing edge region and then grows more gradually in the near and far wake regions. The decay of the maximum unresolved unsteadiness and maximum unresolved velocity cross correlations is very rapid in the trailing edge region and this trend slows in the far wake region. In the trailing edge region, the maximum periodic velocity correlations are much larger than the maximum unresolved velocity correlations. But the periodic velocity correlations decay much faster than the unresolved velocity correlations. The interactions of the nozzle and rotor wakes are also studied. While the interaction of the nozzle wake with the rotor wake does not influence the decay rate of the various wake properties, it does change the magnitude of the properties. These and other results are presented in this paper.

1995 ◽  
Author(s):  
Michael A. Zaccaria ◽  
Budugur Lakshminarayana

The two-dimensional steady and unsteady flow field at midspan in a turbine rotor has been investigated experimentally using an LDV with an emphasis on the interaction of the nozzle wake with the rotor flow field. The velocity measurements are decomposed into a time-averaged velocity, a periodic velocity component and an unresolved velocity component. The results in the rotor passage were presented in Part I. The flow field downstream of the rotor is presented in this paper. The rotor wake profiles and their decay characteristics were analyzed. Correlations are presented which match the decay of the various wake properties. The rotor wake velocity defect decays rapidly in the trailing edge region, becoming less rapid in the near and far wake regions. The rotor wake semi-wake width increases rapidly in the trailing edge region and then grows more gradually in the near and far wake regions. The decay of the maximum unresolved unsteadiness and maximum unresolved velocity cross correlations are very rapid in the trailing edge region and this trend slows in the far wake region. In the trailing edge region, the maximum periodic velocity correlations are much larger than the maximum unresolved velocity correlations. But the periodic velocity correlations decay much faster than the unresolved velocity correlations. The interaction of the nozzle and rotor wakes are also studied. While the interaction of the nozzle wake with the rotor wake does not influence the decay rate of the various wake properties, it does change the magnitude of the properties. These and other results will be presented in this paper.


Author(s):  
Michael A. Zaccaria ◽  
Budugur Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I, while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time average flow field and the unsteadiness caused by the wake has been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


Author(s):  
Takayuki Matsunuma

The unsteady flow field of an annular turbine rotor was investigated experimentally using a laser Doppler velocimetry (LDV) system. Detailed measurements of the time-averaged and time-resolved distributions of the velocity, flow angle, and turbulence intensity, etc. were carried out at a very low Reynolds number condition, Reout = 3.5 × 104. The data obtained were analyzed from the viewpoints of both an absolute (stationary) frame of reference and a relative (rotating) frame of reference. The effect of the turbine nozzle wake and secondary vortices on the flow field inside the rotor passage was clearly captured. It was found that the nozzle wake and secondary vortices are suddenly distorted at the rotor inlet, because of the rotating potential field of the rotor. The nozzle flow (wake and passage vortices) and the rotor flow (boundary layer, wake, tip leakage vortex, and passage vortices) interact intensively inside the rotor passage.


1997 ◽  
Vol 119 (2) ◽  
pp. 201-213 ◽  
Author(s):  
M. A. Zaccaria ◽  
B. Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I. while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time-averaged flow field and the unsteadiness caused by the wake have been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


2006 ◽  
Vol 129 (2) ◽  
pp. 360-371 ◽  
Author(s):  
Takayuki Matsunuma

The unsteady flow field of an annular turbine rotor was investigated experimentally using a laser Doppler velocimetry (LDV) system. Detailed measurements of the time-averaged and time-resolved distributions of the velocity, flow angle, turbulence intensity, etc., were carried out at a very low Reynolds number condition, Reout=3.5×104. The data obtained were analyzed from the viewpoints of both an absolute (stationary) frame of reference and a relative (rotating) frame of reference. The effect of the turbine nozzle wake and secondary vortices on the flow field inside the rotor passage was clearly captured. It was found that the nozzle wake and secondary vortices are suddenly distorted at the rotor inlet, because of the rotating potential field of the rotor. The nozzle flow (wake and passage vortices) and the rotor flow (boundary layer, wake, tip leakage vortex, and passage vortices) interact intensively inside the rotor passage.


Author(s):  
K. L. Suder ◽  
T. H. Okiishi ◽  
M. D. Hathaway ◽  
A. J. Strazisar ◽  
J. J. Adamczyk

This two-part paper presents detailed laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective of this study was to provide additional insight into unsteady blade-row interactions within high speed compressors which affect stage efficiency, energy transfer, and other design considerations. Part I of this paper describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the “rotor-wake-generated” and “unresolved” unsteadiness, respectively. The term “rotor-wake-generated” unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term “unresolved” unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctuations, etc. A procedure for calculating auto and cross correlations of the rotor-wake-generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.


2021 ◽  
Author(s):  
Iván Monge-Concepción ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Michael D. Barringer ◽  
Karen A. Thole ◽  
...  

Abstract Hot gas ingestion into the turbine rim seal cavity is an important concern for engine designers. To prevent ingestion, rim seals use high pressure purge flow but excessive use of the purge flow decreases engine thermal efficiency. A single stage test turbine operating at engine-relevant conditions with real engine hardware was used to study time-resolved pressures in the rim seal cavity across a range of sealing purge flow rates. Vane trailing edge (VTE) flow, shown previously to be ingested into the rim seal cavity, was also included to understand its effect on the unsteady flow field. Measurements from high-frequency response pressure sensors in the rim seal and vane platform were used to determine rotational speed and quantity of large-scale structures (cells). In a parallel effort, a computational model using Unsteady Reynolds-averaged Navier-Stokes (URANS) was applied to determine swirl ratio in the rim seal cavity and time-resolved rim sealing effectiveness. The experimental results confirm that at low purge flow rates, the VTE flow influences the unsteady flow field by decreasing pressure unsteadiness in the rim seal cavity. Results show an increase in purge flow increases the number of unsteady large-scale structures in the rim seal and decreases their rotational speed. However, VTE flow was shown to not significantly change the cell speed and count in the rim seal. Simulations point to the importance of the large-scale cell structures in influencing rim sealing unsteadiness, which is not captured in current rim sealing predictive models.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
David Demel ◽  
Mohsen Ferchichi ◽  
William D. E. Allan ◽  
Marouen Dghim

This work details an experimental investigation on the effects of the variation of flap gap and overlap sizes on the flow field in the wake of a wing-section equipped with a trailing edge Fowler flap. The airfoil was based on the NACA 0014-1.10 40/1.051 profile, and the flap was deployed with 40 deg deflection angle. Two-dimensional (2D) particle image velocimetry (PIV) measurements of the flow field in the vicinity of the main wing trailing edge and the flap region were performed for the optimal flap gap and overlap, as well as for flap gap and overlap increases of 2% and 4% chord beyond optimal, at angles of attack of 0 deg, 10 deg, and 12 deg. For all the configurations investigated, the flow over the flap was found to be fully stalled. At zero angle of attack, increasing the flap gap size was found to have minor effects on the flow field but increased flap overlap resulted in misalignment between the main wing boundary layer (BL) flow and the slot flow that forced the flow in the trailing edge region of the main wing to separate. When the angle of attack was increased to near stall conditions (at angle of attack of 12 deg), increasing the flap gap was found to energize and improve the flow in the trailing edge region of the main wing, whereas increased flap overlap further promoted flow separation on the main wing suction surface possibly steering the wing into stall.


1977 ◽  
Vol 99 (1) ◽  
pp. 97-105 ◽  
Author(s):  
J. P. Gostelow

Measurements of the unsteady flow field over a rotor and within its wake are needed in the development of most turbomachines. The technique advocated is that of data acquisition by on-line computer, using the periodic passing of a blade as a phase reference. The phase-lock averaging process is described as is its use in reducing the noise of raw data traces. Measurements of the unsteady flow over a cascade and of the resulting boundary layer behavior are presented. The approach was used in interpreting the unsteady flow field of an axial-flow compressor rotor and the static pressure distribution over the rotor tip. Finally the application to centrifugal pumps is discussed, enabling the designer to obtain information on the suction pressures and the extent of any separated region.


Author(s):  
Friedrich Kost ◽  
Frank Hummel ◽  
Maik Tiedemann

Within a European project a high-pressure turbine stage was investigated at DLR, Göttingen. The investigations consisted primarily of experiments carried out in the windtunnel for Rotating Cascades (RGG), but some numerical work was also performed. Detailed measurements were carried out at mid section of a turbine rotor using a Laser-2-Focus device which served as a velocimeter measuring 2D-velocity vectors and turbulence quantities and as a tool to determine the concentration of coolant ejected at the trailing edge of the stator blades. The measurement of coolant concentration downstream of the stator and inside the rotor provided a detailed picture of the stator wake development and its interaction with the moving rotor. Axial measurement locations reached from the stator exit through the rotor to a downstream measurement plane. Measurement results are presented as instantaneous flow values. Unsteady flow vectors and turbulence intensities could be related at 16 time instants representing one rotor blade passsing period to the wake development made visible by the coolant concentration. The measured unsteady flow vectors and unsteady pressures, measured with semi-conductor pressure transducers, are compared with results from a numerical calculation using the Navier-Stokes code “TRACE-U” which allows the computation of the unsteady flow field. The measured steady and unsteady flow quantities served to validate the Navier-Stokes code. A comparison of the wake entropy trajectories outside the blade boundary layers and at the wall gives an impression of the lag between the arrival time of the wake in the freestream near the blade surface and the time the boundary layer quantities at the blade surface itself are affected.


Sign in / Sign up

Export Citation Format

Share Document