A Numerical Study of Flutter in a Transonic Fan

1998 ◽  
Vol 120 (3) ◽  
pp. 500-507 ◽  
Author(s):  
K. Isomura ◽  
M. B. Giles

The bending mode Flutter of a modern transonic fan has been studied using a quasi-three-dimensional viscous unsteady CFD code. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, commonly referred to as transonic stall flutter. This type of Flutter is often encountered in modern wide chord fans without a part span shroud. The CFD simulation uses an upwinding scheme with Roe’s third-order flux differencing, and Johnson and King’s turbulence model with the later modification due to Johnson and Coakley. A dynamic transition point model is developed using the en method and Schubauer and Klebanoff’s experimental data. The calculations of the flow in this fan reveal that the source of the flutter of IHI transonic fan is an oscillation of the passage shock, rather than a stall. As the blade loading increases, the passage shock moves forward. Just before the passage shock unstarts, the stability of the passage shock decreases, and a small blade vibration causes the shock to oscillate with a large amplitude between unstarted and started positions. The dominant component of the blade excitation force is due to the foot of the oscillating passage shock on the blade pressure surface.

Author(s):  
Kousuke Isomura ◽  
Michael B. Giles

The bending mode flutter of a modern transonic fan has been studied using a quasi-3D viscous unsteady CFD code. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, commonly referred to as transonic stall flutter. This type of flutter is often encountered in modern wide chord fans without a part span shroud. The CFD simulation uses an upwinding scheme with Roe’s 3rd-order flux differencing, and Johnson and King’s turbulence model with the later modification due to Johnson and Coakley. A dynamic transition point model is developed using the en method and Schubauer and Klebanoff’s experimental data. The calculations of the flow in this fan reveal that the source of the flutter of IHI transonic fan is an oscillation of the passage shock, rather than a stall. As the blade loading increases, the passage shock moves forward. Just before the passage shock unstarts, the stability of the passage shock decreases, and a small blade vibration causes the shock to oscillate with a large amplitude between unstarted and started positions. The dominant component of the blade excitation force is due to the foot of the oscillating passage shock on the blade pressure surface.


Author(s):  
Kousuke Isomura

The effect of the coupling of the torsion mode blade vibration to the bending mode flutter in transonic fans has been studied by quasi-3D viscous unsteady calculations. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, for which the mechanism is that the instability of the passage shock wave when it unstarts generates the dominant blade exciting aerodynamic work at its foot on the pressure surface of the blade. The dependence of such flutter on the blade vibration mode, i.e. the amplitude ratio and the phase difference of the bending and torsional components has been studied. The study showed that the blade exciting aerodynamic work reduced when the torsional component is added in-phase (torsional motion noses up during the upward bending motion) to the bending oscillation. The amplitude of the torsional component was shown to have an optimum amplitude. It was also shown that this tendency would switch when the shock wave is fully detached, and the blade exciting aerodynamic work would increase by adding the torsional component in-phase to the bending oscillation.


2011 ◽  
Vol 142 ◽  
pp. 107-110
Author(s):  
Ming Jun Han ◽  
You Tang Li ◽  
Ping Qiu ◽  
Xin Zhi Wang

The nonlinear dynamical equations are established by using the method of quasi-shells for three-dimensional shallow spherical shells with circular bottom. Displacement mode that meets the boundary conditions of fixed edges is given by using the method of the separate variable, A nonlinear forced vibration equation containing the second and the third order is derived by using the method of Galerkin. The stability of the equilibrium point is studied by using the Floquet exponent.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


1976 ◽  
Vol 31 (11) ◽  
pp. 1277-1288 ◽  
Author(s):  
D. Lortz ◽  
J. Nührenberg

Abstract The expansion of a three-dimensional toroidal magnetohydrostatic equilibrium around its magnetic axis is reconsidered. Equilibrium and stability plasma-β estimates are obtained in connection with a discussion of stagnation points occurring in the third-order flux surfaces. The stability criteria entering the β-estimates are: (i) a necessary criterion for localized disturbances, (ii) a new sufficient criterion for configurations without longitudinal current. Hamada coordinates are used to evaluate these criteria.


Author(s):  
Ve´ronique Penin ◽  
Pascale Kulisa ◽  
Franc¸ois Bario

During the last few decades, the size and weight of turbo-machinery have been continuously reduced. However, by decreasing the distance between rows, rotor-stator interaction is strengthened. Two interactions now have the same magnitude: wake interaction and potential effect. Studying this effect is essential to understand rotor-stator interactions. Indeed, this phenomenon influences the whole flow, including the boundary layer of the upstream and downstream blades, ergo the stability of the flow and the efficiency of the machine. A large scale turbine cascade followed by a specially designed rotating cylinder system is used. Synchronised velocity LDA measurements on the vane profile show the flow and boundary layer behavior due to the moving bars. To help the general understanding and to corroborate our experimental results, numerical investigations are carried out with an unsteady three dimensional Navier-Stokes code. Moreover, the numerical study informs about the potential disturbance to the whole flow of the cascade.


2019 ◽  
Vol 9 (3) ◽  
pp. 600 ◽  
Author(s):  
Qing Wang ◽  
Qijun Zhao

To study the three-dimensional effects on the dynamic-stall characteristics of a rotor blade, the unsteady flowfields of the finite wing and rotor were simulated under dynamic-stall conditions, respectively. Unsteady Reynolds-averaged Navier–Stokes (URANS) equations coupled with a third-order Roe–MUSCL spatial discretization scheme were chosen as the governing equations to predict the three-dimensional flowfields. It is indicated from the simulated results of a finite wing that dynamic stall would be restricted near the wing tip due to the influence of the wing-tip vortex. By comparing the simulated results of the finite wing with the spanwise flow, it is indicated that the spanwise flow would arouse vortex accumulation. Consequently, the dynamic stall is restricted near the wing root and aggravated near the wing tip. By comparing the simulated results of a rotor in forward flight, it is indicated that the dynamic stall of the rotor would be inhibited due to the effects of the spanwise flow and Coriolis force. This work fills the gap regarding the insufficient three-dimensional dynamic stall of a helicopter rotor, and could be used to guide rotor airfoil shape design in the future.


Author(s):  
Caimao Luo ◽  
Behdad Moghtaderi ◽  
Eric Kennedy ◽  
Bogdan Dlugogorski

A three-dimensional (3D) model of a methane-air counter-flow, non-premixed flame with a global reaction step for methane oxidation was developed using computational fluid dynamics (CFD) simulation. A specific computational domain, and relevant thermodynamic and transport data calculated by the chemical kinetic code CHEMKIN, were incorporated into the model. The model was validated by comparing predictions with the spontaneous Raman scattered profiles of major combustion species reported in the literature. The model was employed to carefully examine the self-similarity assumptions normally invoked in simulating counter-flow non-premixed flames. It was found that while most assumptions were strictly satisfied within the jet region for the case of plug flow boundary conditions (B.C.) along the central axis, for the quadratic boundary condition case (corresponding to uniform plug-flow), assumptions were only approximately valid within the jet region. Also, the influence of shroud gas was examined by setting the surrounding gas as air and increasing the shroud gas through widening the shroud gas gap while maintaining a constant shroud gas velocity. Calculations revealed that, the resulting flames for shroud gas gaps greater than half of the jet radius, were totally insulated from mixing with the ambient air. The effect of buoyancy on the flame structures was also studied by comparing contours of the combustion products, temperature and turbulent properties.


1998 ◽  
Author(s):  
Junji Takado ◽  
Toyotaka Sonoda ◽  
Satoshi Nakamura

Experimental and numerical investigations have been carried out to understand the effects of the inlet boundary layer (IBL) on the tip flow field including the aerodynamic performance in a transonic fan rotor. Both the steady and the unsteady phenomena in the tip flow field have been investigated for operating conditions near peak efficiency and near stall with the two types of tip IBL. In order 10 study these phenomena, high response pressure data with Kulite transducers and laser doppler velocimeter (LDV) data have been acquired around the tip region. Furthermore, three-dimensional Navier-Stokes numerical simulations have been compared with the measured results. The results indicate that the tip IBL significantly influences the spanwise distribution of pressure ratio around the tip region and the stall characteristics including the passage shock / tip leakage vortex interaction, the blockage generation, the wake structure, and the unsteadiness of the tip flow field. In particular, at a near stall condition for the thick IBL with high turbulence intensity level, the tip diffusion level is increased due to a larger blockage, which is generated downstream of a much stronger interaction region. These phenomena are a consequence of the low momentum fluid in the tip IBL, and significantly reduce the stall margin. Furthermore, the unsteadiness drastically increases around the interaction region and around the pressure surface where the blockage migrates. These unsteady phenomena are distinctive features near stall. Downstream of the rotor, the larger and more unsteady blockage is discharged from the pressure surface side, and complicates the three-dimensional rotor exit flow field around the tip region.


1999 ◽  
Vol 380 ◽  
pp. 205-232 ◽  
Author(s):  
LEV SHEMER ◽  
MELAD CHAMESSE

Benjamin–Feir instability of nonlinear gravity–capillary waves is studied experimentally. The experimental results are compared with computations performed for values of wavelength and steepness identical to those employed in the experiments. The theoretical approach is based on the Zakharov nonlinear equation which is modified here to incorporate weak viscous dissipation. Experiments are performed in a wave ume which has an accurately controlled wavemaker for generation of the carrier wave, as well as an additional independent conical wavemaker for generation of controlled three-dimensional disturbances. The approach adopted in the present experimental investigation allows therefore the determination of the actual boundaries of the instability domain, and not just the most unstable disturbances. Instantaneous surface elevation measurements are performed with capacitance-type wave gauges. Multipoint measurements make it possible to determine the angular dependence of the amplitude of the forced and unforced disturbances, as well as their variation along the tank. The limits of the instability domains obtained experimentally for each set of carrier wave parameters agree favourably with those computed numerically using the model equation. The numerical study shows that application of the Zakharov equation, which is free of the narrow-band approximation adopted in the derivation of the nonlinear Schrödinger (NLS) equation, may lead to qualitatively different results regarding the stability of nonlinear gravity–capillary waves. The present experiments support the results of the numerical investigation.


Sign in / Sign up

Export Citation Format

Share Document