Dynamics and Stability of a Flexible Cylinder in a Narrow Coaxial Cylindrical Duct Subjected to Annular Flow

1990 ◽  
Vol 57 (1) ◽  
pp. 232-240 ◽  
Author(s):  
M. P. Paidoussis ◽  
D. Mateescu ◽  
W.-G. Sim

This paper considers analytically the dynamics of a flexible cylinder in a narrow coaxial cylindrical duct, subjected to annular flow. In the present analysis, in contrast to existing theory, the viscous forces are not derived by an adaptation of Taylor’s unconfined-flow relationships, but by a systematic, albeit approximate, solution of the Navier-Stokes equations, which accounts for the unsteady viscous effects much more fully than heretofore; it is found that, for very narrow annuli, the contribution of these unsteady viscous forces to the overall unsteady forces on the cylinder can be much larger than that of the steady skin friction and pressure-drop effects alone. The present analysis also differs from existing theory in that the in-viscid forces are not derived via the slender-body approximation, and hence the analysis is also applicable to bodies of relatively small length-to-radius ratio. The dynamics and stability of typical systems with fixed ends is investigated, concentrating mainly on viscous effects and comparing the results with those of previous work. It is found that, as the annular gap becomes narrower, the system loses stability by divergence at smaller flow velocities, provided the gap size is such that inviscid fluid effects are dominant. For very narrow annuli, however, where viscous forces predominate, this trend is reversed, and further narrowing of the annular gap has a stabilizing effect on the system; furthermore, in some cases the system loses stability by flutter rather than divergence.

1991 ◽  
Vol 113 (4) ◽  
pp. 334-343 ◽  
Author(s):  
R. W. Yeung ◽  
C.-F. Wu

The problem of a body oscillating in a viscous fluid with a free surface is examined. The Navier-Stokes equations and boundary conditions are linearized using the assumption of small body-motion to wavelength ratio. Generation and diffusion of vorticity, but not its convection, are accounted for. Rotational and irrotational Green functions for a divergent and a vorticity source are presented, with the effects of viscosity represented by a frequency Reynolds number Rσ = g2/νσ3. Numerical solutions for a pair of coupled integral equations are obtained for flows about a submerged cylinder, circular or square. Viscosity-modified added-mass and damping coefficients are developed as functions of frequency. It is found that as Rσ approaches infinity, inviscid-fluid results can be recovered. However, viscous effects are important in the low-frequency range, particularly when Rσ is smaller than O(104).


2016 ◽  
Vol 16 (10) ◽  
pp. 1550072 ◽  
Author(s):  
W.-B. Ning ◽  
D.-Z. Wang

This paper presents an analytical approach for investigating the dynamics and stability of an outer cylindrical shell conveying viscous fluid (i.e. water) in the annulus between the inner shell-type body and the outer shell with thermal load. The steady viscous forces that induce prestress on the shells are determined based on the time–mean Navier–Stokes equations. The shell motions are described by Flügge’s shell equations incorporating the prestress arising from the viscous effect. The shell-vibration-induced fluid forces are described by means of the potential flow theory, and the thermal loads are determined by the thermoelastic theory. The analytical model is conducted by the zero-level contour method with the aid of the weighted residual technology. The present study shows that the effect of viscosity in the annular flow renders the system more unstable. Moreover, the thermal load tends to reduce the critical flow velocity pronouncedly, for which there exists a critical temperature rise.


Author(s):  
M. Amabili ◽  
R. Garziera

The effect of steady viscous forces on vibrations of shell with internal and annular flow has been considered by using the time-mean Navier-Stokes equations. The model developed by Amabili & Garziera (2000), capable of simulating shells with non-uniform boundary conditions, added masses and partial elastic bed, has been extended to include non-uniform prestress. The effect of steady viscous forces has been added to the inviscid flow formulation considered by Amabili & Garziera (2002). The computer code DIVA has been developed by using the model developed in the present study. It has been validated by comparison with available results for shells with uniform constraints and has been used to study shells with non-uniform constraints and added lumped masses.


1991 ◽  
Vol 113 (3) ◽  
pp. 409-417 ◽  
Author(s):  
A. El Chebair ◽  
A. K. Misra

This paper investigates theoretically for the first time the dynamical behavior and stability of a simply supported shell located coaxially in a rigid cylindrical conduit. The fluid flow is incompressible and the fluid forces consist of two parts: (i) steady viscous forces which represent the effects of upstream pressurization of the flow; (ii) unsteady forces which could be inviscid or viscous. The inviscid forces were derived by linearized potential flow theory, while the viscous ones were derived by means of the Navier-Stokes equations. Shell motion is described by the modified Flu¨gge’s shell equations. The Fourier transform technique is employed to formulate the problem. First, the system is subjected only to the unsteady inviscid forces. It is found that increasing either the internal or the annular flow velocity induces buckling, followed by coupled mode flutter. When both steady viscous and unsteady inviscid forces are applied, for internal flow, the system becomes stabilized; while for annular flow, the system loses stability at much lower velocities. Second, the system is only subjected to the unsteady viscous forces. Calculations are only performed for the internal flow case. The results are compared to those of inviscid theory. It is found that the effects of unsteady viscous forces on the stability of the system are very close to those of unsteady inviscid forces.


Author(s):  
Pierre Ferrant ◽  
Lionel Gentaz ◽  
Bertrand Alessandrini ◽  
Romain Luquet ◽  
Charles Monroy ◽  
...  

This paper documents recent advances of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach, a method for simulating fully nonlinear wave-body interactions including viscous effects. The methods efficiently combines a fully nonlinear potential flow description of undisturbed wave systems with a modified set of RANS with free surface equations accounting for the interaction with a ship or marine structure. Arbitrary incident wave systems may be described, including regular, irregular waves, multidirectional waves, focused wave events, etc. The model may be fixed or moving with arbitrary speed and 6 degrees of freedom motion. The extension of the SWENSE method to 6 DOF simulations in irregular waves as well as to manoeuvring simulations in waves are discussed in this paper. Different illlustative simulations are presented and discussed. Results of the present approach compare favorably with available reference results.


2014 ◽  
Author(s):  
P. Bigay ◽  
A. Bardin ◽  
G. Oger ◽  
D. Le Touzé

In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.


Author(s):  
Mohammad Taeibi-Rahni ◽  
Shervin Sharafatmand

The consistent behavior of non-dimensional parameters on the formation and break up of large cylindrical droplets has been studied by direct numerical simulations (DNS). A one-fluid model with a finite difference method and an advanced front tracking scheme was employed to solve unsteady, incompressible, viscous, immiscible, multi-fluid, two-dimensional Navier-Stokes equations. This time dependent study allows investigation of evolution of the droplets in different cases. For moderate values of Atwood number (AT), increasing Eotvos number (Eo) explicitly increases the deformation rate in both phenomena. Otherwise, raising the Ohnesorge number (Oh) basically amplifies the viscous effects.


1976 ◽  
Vol 98 (2) ◽  
pp. 214-222 ◽  
Author(s):  
J. E. Zweig ◽  
H. J. Sneck

The general hydrodynamic behavior at small clearance Reynolds numbers of two fluids of different density and viscosity occupying the finite annular space between a rotating and stationary disk is explored using a simplified version of the Navier-Stokes equations which retains only the centrifugal force portion of the inertia terms. A criterion for selecting the annular flow fields that are compatible with physical reservoirs is established and then used to determine the conditions under which two-fluid flows in the annulus might be expected for specific fluid combinations.


The numerical solution by McConalogue & Srivastava (1968) of Dean’s simplified Navier–Stokes equations for the laminar flow of an inviscid fluid through a tube of circular cross-section of radius a , coiled in a circular arc of radius L , and valid for k in the range (16.6, 77.1), where k = Re √( a / L ), Re the Reynolds number, is compared with experiment, correlated to the asymptotic solutions for k > 100, and extended to study the convective axial dis­persion of a substance injected into the tube. The variation of the calculated flux ratio agrees closely with White’s (1929) measurements of the inverse quantity over the same range, and the field patterns for the upper end of the range establish the validity of the two basic assumptions of the asymptotic solutions. The original method is extended to calculate the mean axial velocity of a typical particle of the fluid and to present the statis­tical distribution of mean velocity over the particles of a substance injected as a thin disk uniformly over the cross section of the tube. These distributions are used to display the varia­tion with k of the shape of indicator concentration-time curves. The expected effect of secondary flow, in producing a more uniform distribution of velocity over the fluid than in Poiseuille flow, is evident.


Sign in / Sign up

Export Citation Format

Share Document