Cross-Coupled Adaptive Feedrate Control for Multiaxis Machine Tools

1991 ◽  
Vol 113 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Hua-Yi Chuang ◽  
Chang-Huan Liu

Cross-coupled controllers have been proposed for improving contouring accuracy of multiaxis machine tools. However, during cross-coupled motion control, increasing contour feedrate may result in larger contour errors. In order to increase feedrate and hence productivity without sacrificing the contouring performance, this paper presents an adapative feedrate control strategy based on a linear perturbed model. The method effectively closes the feedback loop between the contour error and feedrate. An experimental biaxial control system is constructed to implement the proposed strategy. Both computer simulation and experiments have verified that desired contouring accuracy can be achieved.

2011 ◽  
Vol 188 ◽  
pp. 499-502
Author(s):  
L. Zhou ◽  
Wen Jie Nie ◽  
Z.R. Liao ◽  
X.R. Liang ◽  
G.Q. Pan

With the higher requirements of product processing, single-function machine can not meet the production needs. By analyzing the principles of reconfigurable machine tools, based on 51 single-chip microcomputer, this article researches the control system of reconfigurable machine tool, implements precision motion control for motors. The research can also reduce costs, so the practicality and economy all have a certain advantage, which will help promote the use in practice.


Manufacturing ◽  
2003 ◽  
Author(s):  
Sungsoo Kim ◽  
Seung Hwan Lee ◽  
Daehie Hong ◽  
Woo Chun Choi ◽  
Jae-Bok Song

In machining processes, contouring accuracy is usually more important than tracking performance. In order to reduce the contour error, there have been many contour control algorithms for conventional machine tools, which noticeably improve their contouring accuracy. However, the available contour control algorithms cannot be directly applied to the parallel machine tools. The dynamic characteristics of the parallel machine tools are not consistent inside workspace and unsymmetrical disturbances can be imposed on any axis. Due to these, mismatched dynamics cause unwanted contour error. In this paper, we present a contour control algorithm for the cubic parallel machine tool that employs the parallel mechanism for its moving table, which can be also applied to a general parallel manipulator. The contour error estimation method for free-formed curve trajectory is proposed and the relation between the contour error vectors in joint and Cartesian spaces is considered. In order to show the validity of the algorithm, the contour control simulations and experiments are made for various contour trajectories with the cubic parallel machine tool. The results show that the proposed controller reduces the contour error considerably both in joint and Cartesian spaces.


Author(s):  
Qingcang Yu ◽  
Fidelis O. Eke ◽  
Harry H. Cheng ◽  
Jacob S. Duane ◽  
Joe A. Palen

The California Department of Transportation has sponsored the development of a new family of out of pavement, laser based sensing devices for monitoring road vehicles on the highway. These devices are to be placed over highway traffic lanes, so that they can have an unobstructed view of vehicles moving along the highway. It is expected that there will be need for relatively frequent adjustment of the actual location of these devices over the freeway, so that they can be moved from one lane to another, or so the position over a given lane can be modified. Because of these constraints, a mobile support platform is planned for these devices. This paper presents a motion control strategy for such a mobile platform, and the necessary hardware to implement the control system. The ideas presented in the paper have been tested on a prototype mobile support platform.


Author(s):  
Dong-Hun Lee ◽  
Duc-Quan Tran ◽  
Young-Bok Kim

In this study, a motion control problem for the vessels towed by tugboats or towing ships on the sea is considered. The towed vessels including barge ships are need to have assistance of tugboats. Combining two vessels, some work purposes in the sea or harbor area can be completed. In this study, the authors give newly developed mathematical model and control system strategy. Especially, the system model fully presenting the physical characteristics of two vessels are derived. For controlling the system effectively, it is considered that the towed vessel has no power propulsion system but the rudder is activated to improve the maneuverability. Considering the strong nonlinearities included in the vessel dynamics, the modelled system is presented by nonlinear system without linearization of nonlinear parameters. Thus, the control system for the towed vessel is designed based on the nonlinear control scheme. Exactly, the back-stepping control method is applied to its motion control. Also, the PID control method is applied for comparing with the proposed control strategy.


Author(s):  
Robert G. Landers ◽  
S. N. Balakrishnan

Contour control is critical in many motion control systems (e.g., manufacturing, robotics). A contour control algorithm is implemented in many applications to drive the contour error to zero; however, the additional algorithm significantly increases the complexity of the overall control system. In this paper, a hierarchical optimal control methodology is developed to design a single servomechanism control system capable of simultaneously driving contour error and individual servomechanism position errors to zero. The designer can systematically trade-off the importance of contour error and servomechanism position errors without the increased complexity of an additional algorithm. The methodology is applied to a two-axis motion control system and simulation studies are conducted for linear, circular, and elliptical contours. The results demonstrate the excellent tracking ability of the proposed motion control methodology and its utility for complex contours.


2010 ◽  
Vol 44-47 ◽  
pp. 3148-3153 ◽  
Author(s):  
Jing Li ◽  
Yong Yi He ◽  
Nan Yan Shen ◽  
Ming Lun Fang

The tracking lag error of a single axis in non-circular grinding is hard to be reduced due to the big inertia of grinding carriage and the large acceleration of crankshaft. Thus, it’s unsatisfied to improve the contour precision of crankpin just by enhancing the tracking precision of a single axis. To obtain a more accurate contour, the cross-coupled control system is designed based on the approximation that the coupled motion between the rotation axis of crankshaft and the linear axis of grinding carriage is simplified as the coupled motion between two linear axes. And then the control strategy that the parameters of cross-coupled control system are variable along the motion path of crankpin non-circular grinding is proposed to make up for it deficiency in the control of nonlinear path. To minimizing the contour error, differential evolution algorithm is also introduced to optimize the control parameters segment by segment. The simulation results demonstrate the theory contour precision of crankpin non-circular grinding is advanced obviously by the cross-coupled control with variable parameters in comparison with the common cross-coupled control.


2012 ◽  
Vol 579 ◽  
pp. 287-296 ◽  
Author(s):  
Ke Han Su ◽  
Ming Yang Cheng ◽  
Yu Chen Chang

One of the key issues regarding multi-axis contour following tasks in modern high-precision machining applications is how to effectively reduce contour error. Generally, among existing approaches, the Cross-Coupled Control (CCC) structure is widely used in multi-axis contour following tasks to improve contouring accuracy. However, when a servomechanism is operated in reverse or low-speed motions, the inherent friction force and external disturbance effects will degrade the CCC performance. Therefore, to cope with the aforementioned problems, this paper exploits the Karnopp friction model-based compensator and the Virtual Plant Disturbance Compensator (VPDC) to improve tracking performance as well as contouring accuracy. Moreover, an integrated motion control scheme is also developed to further improve contouring performance. The proposed scheme consists of two position loop controllers with velocity command feedforward, a modified CCC, two friction force compensators, and two disturbance compensators. To evaluate the performance of the proposed approach, several free-form contour following experiments have been conducted on an X-Y table driven by two linear motors. Experimental results verify that the proposed approach can significantly enhance contouring performance for free-form contour following tasks.


Sign in / Sign up

Export Citation Format

Share Document