Velocity Field in Direct, Indirect and Friction Assisted Extrusion of Al

2013 ◽  
Vol 554-557 ◽  
pp. 776-786 ◽  
Author(s):  
Sepinood Torabzadeh Khorasani ◽  
Henry Valberg

This study investigates the velocity fields that are descriptive for the forward, backward and friction assisted extrusion of axisymmetric rods. The Avitzur theory was used to calculate the velocity field and strain rate in extrusion of Al alloys. Several simulations have also been performed by using finite element analysis (FEA) with DEFORM 2D, in order to find the admissible velocity field for different conditions of friction including high and low friction. The results from FEA and theory of axisymmetric extrusion are compared to see if there is good agreement. The correlation between the data obtained by theory and FEA is discussed.

2012 ◽  
Vol 504-506 ◽  
pp. 511-516 ◽  
Author(s):  
Sepinood Torabzadeh Khorasani ◽  
Henry Valberg

In this study the cold extrusion of Al alloys will be investigated by finite element analysis (FEA) using DEFORM 2D. Besides, theoretical calculations to find the required extrusion force will be done. Several FE-simulations have been performed for two different extrusion geometries and for different conditions of friction including high and low friction, to quantify the influence of friction on the extrusion force. The results from FEA and theory for cold extrusion are compared to see if there is good agreement. The correlation between the data obtained by theory and FEA is discussed.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


Author(s):  
H. Haghighat ◽  
P. Amjadian

In this paper, plane strain extrusion through arbitrarily curved dies is investigated analytically, numerically, and experimentally. Two kinematically admissible velocity fields based on assuming proportional angles, angular velocity field, and proportional distances from the midline in the deformation zone, sine velocity field, are developed for use in upper bound models. The relative average extrusion pressures for the two velocity fields are compared to each other and also with the velocity field of a reference for extrusion through a curved die. The results demonstrate that the angular velocity field is the best. Then, by using the developed analytical model, optimum die lengths which minimize the extrusion loads are determined for a streamlined die and also for a wedge shaped die. The corresponding results for those two die shapes are also determined by using the finite element code and by doing some experiments and are compared with upper bound results. These comparisons show a good agreement.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


2008 ◽  
Vol 392-394 ◽  
pp. 879-883
Author(s):  
Hui Xia Liu ◽  
H. Yan ◽  
Xiao Wang ◽  
Shu Bin Lu ◽  
K. Yang ◽  
...  

Two 3-D finite element models of coated tool and uncoated tool were established using the finite element code DEFORM-2D based on the updated Lagrangian formula. And their machinability on high speed orthogonal machining was simulated and compared. The investigation results indicate that the coated tool has higher surface temperature and lower inside temperature compared with the uncoated tool. Moreover, the cutting forces of the model using coated tool are lower than that using uncoated tool.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


2014 ◽  
Vol 893 ◽  
pp. 314-319
Author(s):  
P. Gurusamy ◽  
S. Balasivanandha Prabu ◽  
R. Paskaramoorthy

This paper discusses the influence of die temperature on the solidification behaviour of A356/SiCp composites fabricated by squeeze casting method. Information on the solidification studies of squeeze cast composites is somewhat scarce. Experiments were carried out by varying the die temperatures for cylindrical shaped composite castings K-type thermocouples were interfaced to the die and the temperature-time history was recorded to construct the cooling curves. The cooling curves are also predicted from the finite element analysis (FEA) software ANSYS 13. The experimental and predicted cooling curves are not in good agreement. In addition to, the experimental and theoretical solidification times are studied. It was understood that the increase in the die temperature decreases the cooling rate.


Author(s):  
Chithranjan Nadarajah ◽  
Benjamin F. Hantz ◽  
Sujay Krishnamurthy

This paper is Part 2 of two papers illustrating how isochronous stress strain curves can be used to calculate creep stresses and damage for pressure vessel components. Part 1 [1], illustrated the use of isochronous stress strain curves to obtain creep stresses and damages on two simple example problems which were solved using closed form solution. In Part 2, the isochronous method is implemented in finite element analysis to determine creep stresses and damages on pressure vessel components. Various different pressure vessel components are studied using this method and the results obtained using this method is compared time explicit Omega creep model. The results obtained from the isochronous method is found to be in good agreement with the time explicit Omega creep model.


2013 ◽  
Vol 834-836 ◽  
pp. 720-725 ◽  
Author(s):  
Hai Liang Wang ◽  
Wei Chang ◽  
Xin Lei Yang

Six reinforced concrete beams, including 4 beams strengthened with BFRP sheets at different layer of BFRP sheets and 2 control beams, are tested to investigate the effect of layer of BFRP sheets on the ultimate flexural resistance and load-deflection response of the pre-damaged concrete beams strengthened with BFRP sheets. Results show that the flexural resistance of pre-damaged concrete beams increases along with the BFRP sheets layer increasing,but the flexural resistance enhances the degree not to assume the linear relations to the enforcement layer.Numerical simulation of the pre-damaged concrete beams strengthened with BFRP sheets is conducted by ANSYS, and the results of numerical simulation are compared with those of the test results. It turns out that the results of numerical simulation are in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document