A Mechanism for Shear Band Formation in the High Strain-Rate Torsion Test

1990 ◽  
Vol 57 (4) ◽  
pp. 836-844 ◽  
Author(s):  
Timothy J. Burns

A numerical study of a one-dimensional model of the high strain-rate torsion test shows that a moving boundary of rigid unloading, starting from the ends of the thin-walled tubular specimen, is a plausible mechanism for adiabatic shear band formation during the test. Even though the dimensionless thermal diffusivity parameter is very small, the moving boundary is due to heat transfer from the specimen through its ends, which are assumed to be isothermal heat sinks. The mathematical model is based on a physical model of thermoelastic-plastic flow and a phenomenological Arrhenius model for the plastic flow surface. The numerical technique used is the semi-discretization method of lines.

1999 ◽  
Vol 66 (1) ◽  
pp. 3-9 ◽  
Author(s):  
V. Tvergaard

Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed.


Author(s):  
Ericka K. Amborn ◽  
Karim H. Muci-Küchler ◽  
Brandon J. Hinz

Studying the high strain rate behavior of soft tissues and soft tissue surrogates is of interest to improve the understanding of injury mechanisms during blast and impact events. Tests such as the split Hopkinson pressure bar have been successfully used to characterize material behavior at high strain rates under simple loading conditions. However, experiments involving more complex stress states are needed for the validation of constitutive models and numerical simulation techniques for fast transient events. In particular, for the case of ballistic injuries, controlled tests that can better reflect the effects induced by a penetrating projectile are of interest. This paper presents an experiment that tries to achieve that goal. The experimental setup involves a cylindrical test sample made of a translucent soft tissue surrogate that has a small pre-made cylindrical channel along its axis. A small caliber projectile is fired through the pre-made channel at representative speeds using an air rifle. High speed video is used in conjunction with specialized software to generate data for model validation. A Lagrangian Finite Element Method (FEM) model was prepared in ABAQUS/Explicit to simulate the experiments. Different hyperelastic constitutive models were explored to represent the behavior of the soft tissue surrogate and the required material properties were obtained from high strain rate test data reported in the open literature. The simulation results corresponding to each constitutive model considered were qualitatively compared against the experimental data for a single projectile speed. The constitutive model that provided the closest match was then used to perform an additional simulation at a different projectile velocity and quantitative comparisons between numerical and experimental results were made. The comparisons showed that the Marlow hyperelastic model available in ABAQUS/Explicit was able to produce a good representation of the soft tissue surrogate behavior observed experimentally at the two projectile speeds considered.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1154
Author(s):  
Bingfeng Wang ◽  
Chu Wang ◽  
Bin Liu ◽  
Xiaoyong Zhang

The dynamic mechanical properties and microstructure of the (Al0.5CoCrFeNi)0.95Mo0.025C0.025 high entropy alloy (HEA) prepared by powder extrusion were investigated by a split Hopkinson pressure bar and electron probe microanalyzer and scanning electron microscope. The (Al0.5CoCrFeNi)0.95Mo0.025C0.025 HEA has a uniform face-centered cubic plus body-centered cubic solid solution structure and a fine grain-sized microstructure with a size of about 2 microns. The HEA possesses an excellent strain hardening rate and high strain rate sensitivity at a high strain rate. The Johnson–Cook plastic model was used to describe the dynamic flow behavior. Hat-shaped specimens with different nominal strain levels were used to investigate forced shear localization. After dynamic deformation, a thin and short shear band was generated in the designed shear zone and then the specimen quickly fractured along the shear band.


2019 ◽  
Vol 822 ◽  
pp. 66-71
Author(s):  
Anton Naumov ◽  
Anatolii Borisov ◽  
Anastasiya Y. Doroshchenkova

The present research describes the comparison of numerical and physical simulation of hot high strain rate torsion tests for Al-based alloys in order to clarify the accuracy of calculations using basic grades of materials in Deform-3DTM software. A comparative visual analysis of the results is presented. Obtained data on the distribution of temperatures, strains, stresses and strain rates during the torsion test are discussed.


2007 ◽  
Vol 340-341 ◽  
pp. 211-216
Author(s):  
Mitsutoshi Kuroda

In this study, effects of typical texture components observed in rolled aluminum alloy sheets (i.e. Copper, Brass, S, Cube and Goss texture components) on plastic flow localization are studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic-viscoplastic continuum slip constitutive relation. First, forming limits of thin sheet set by sheet necking are predicted using a Marciniak–Kuczynski (M–K-) type approach. It is shown that only the Cube texture component yields forming limits higher than that for a random texture in the biaxial stretch range. Next, three-dimensional shear band analyses are performed, using a three-dimensional version of M–K-type model, but the overall deformation mode is restricted to a plane strain state. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. It is concluded that the Cube texture component is said to be a shear band free texture, while some texture components exhibit significantly low resistance to shear band formation. Finally, shear band developments in plane strain pure bending of sheet specimens with the typical textures are studied.


1982 ◽  
Vol 48 (26) ◽  
pp. 1818-1820 ◽  
Author(s):  
William G. Hoover ◽  
Anthony J. C. Ladd ◽  
Bill Moran

Sign in / Sign up

Export Citation Format

Share Document