Simulation of Three-Dimensional Shear Flow Around a Nozzle-Afterbody at High Speeds

1992 ◽  
Vol 114 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Oktay Baysal ◽  
Wendy B. Hoffman

Turbulent shear flows at supersonic and hypersonic speeds around a nozzle-afterbody are simulated. The three-dimensional, Reynolds-averaged Navier-Stokes equations are solved by a finite-volume and implicit method. The convective and the pressure terms are differenced by an upwind-biased algorithm. The effect of turbulence is incorporated by a modified Baldwin-Lomax eddy viscosity model. The success of the standard Baldwin-Lomax model for this flow type is shown by comparing it to a laminar case. These modifications made to the model are also shown to improve flow prediction when compared to the standard Baldwin-Lomax model. These modifications to the model reflect the effects of high compressibility, multiple walls, vortices near walls, and turbulent memory effects in the shear layer. This numerically simulated complex flowfield includes a supersonic duct flow, a hypersonic flow over an external double corner, a flow through a non-axisymmetric, internal-external nozzle, and a three-dimensional shear layer. The specific application is for the flow around the nozzle-afterbody of a generic hypersonic vehicle powered by a scramjet engine. The computed pressure distributions compared favorably with the experimentally obtained surface and off-surface flow surveys.

1994 ◽  
Vol 274 ◽  
pp. 267-291 ◽  
Author(s):  
Eric Varley ◽  
Brian R. Seymour

A family of exact solutions to the Navier—Stokes equations is used to analyse unsteady three-dimensional viscometric flows that occur in the vicinity of a plane boundary that translates and rotates with time-varying velocities. Such flows are important in the study of flows that are produced by rotating machinery. They are also useful in describing local behaviour in more complex global flows, such as that produced in a shear layer by the passage of a disturbance in the mainstream. An example is the flow produced in a turbulent shear layer by the passage of the core of a Rankine vortex. When the effect of viscosity is unimportant, the use of Lagrangian coordinates reduces the mathematical problem to that of solving a set of linear ordinary differential equations.


2015 ◽  
Vol 772 ◽  
pp. 552-555 ◽  
Author(s):  
Kyu Han Kim ◽  
Joni Cahyono

The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. In the present study, the numerical solution of the discredited three-dimensional, incompressible Navier-Stokes equations over an unstructured grid is accomplished with an ANSYS program. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The results trends are similar between the highest pressure distributions at the impeller also produced highest power outputs on 6 numbers of blades at impeller. The model has been validated, comparing numerical results with available experimental data.


Author(s):  
D.-W. Kim ◽  
Youn J. Kim

The effects of casing shape on the performance and the interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are performed for the circular casing. Comparison of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.


1975 ◽  
Vol 42 (3) ◽  
pp. 575-579 ◽  
Author(s):  
J. C. Chien ◽  
J. A. Schetz

The steady, three-dimensional, incompressible Navier-Stokes equations written in terms of velocity, vorticity, and temperature are solved numerically for channel flows and a jet in a cross flow. Upwind differencing of the convection term was used in the computation for convergence and simplicity. Comparisons were made with experimental results for laminar flow in the entrance region of a square channel, and good agreement was obtained. The method was also applied to a turbulent, buoyant jet in a cross-flow problem with the Boussinesq approximation and a constant Prandtl eddy viscosity model. Good agreement with experiment was obtained in this case also.


2012 ◽  
Vol 253-255 ◽  
pp. 2035-2040
Author(s):  
Ye Bo Liu ◽  
Zhi Ming Liu

Numerical simulations were carried out to investigate the air flow and pressure distributions beneath high speed trains, based on the three-dimensional Reynolds-averaged Navier-Stokes equations with the SST k-ω two-equation turbulence model. The simulation scenarios were of the high speed train, the CRH2, running in the open air at four different speeds: 200km/h, 250km/h, 300km/h and 350km/h. The results show that, the highest area of pressure is located at the front underbody part of the train whist the pressure for rest of the train is relatively small. Increasing speed does not visibly increase the pressure coefficient, indicating that the pressure increases with the square of the operational speed.


2013 ◽  
Vol 353-356 ◽  
pp. 2496-2501
Author(s):  
Biao Lv

A three dimensional non-hydrostatic numerical model is presented based on the incompressible Navier-Stokes equations and mass transport equations. An unstructured finite-volume technique is used to discretized the governing equations with good adaptable to complicated boundary. A conservative scalar transport algorithm is also applied in this model. An integral method of the top- layer pressure is applied to reduce the number of vertical layers. Three classical examples including periodic waves propagating over a submerged bar and non-hydrostatic lock exchange are used to demonstrate the capability and efficiency of the model. The simulation results are in good agreement with the analytical solution and experimental data.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document