Unsteady Multicellular Natural Convection in a Narrow Horizontal Cylindrical Annulus

1990 ◽  
Vol 112 (2) ◽  
pp. 379-387 ◽  
Author(s):  
D. B. Fant ◽  
J. Prusa ◽  
A. P. Rothmayer

Numerical and analytical solutions are presented for multicellular flow instability and the subsequent nonlinear development in a horizontal cylindrical annulus. The Boussinesq approximated Navier–Stokes equations are simplified to Cartesian-like boundary layer equations by means of a high Rayleigh number small gap asymptotic expansion. The full numerical problem is explored for the limiting case of zero Prandtl number. At a finite scaled gap spacing, an instability sets in, which results in periodic multicellular flow. The numerical solutions are found to progress through an increasingly complex sequence of periodic solutions, culminating in a very complex unsteady solution that has features normally associated with chaotic systems.

According to Stewartson (1969, 1974) and to Messiter (1970), the flow near the trailing edge of a flat plate has a limit structure for Reynolds number Re →∞ consisting of three layers over a distance O (Re -3/8 ) from the trailing edge: the inner layer of thickness O ( Re -5/8 ) in which the usual boundary layer equations apply; an intermediate layer of thickness O ( Re -1/2 ) in which simplified inviscid equations hold, and the outer layer of thickness O ( Re -3/8 ) in which the full inviscid equations hold. These asymptotic equations have been solved numerically by means of a Cauchy-integral algorithm for the outer layer and a modified Crank-Nicholson boundary layer program for the displacement-thickness interaction between the layers. Results of the computation compare well with experimental data of Janour and with numerical solutions of the Navier-Stokes equations by Dennis & Chang (1969) and Dennis & Dunwoody (1966).


Author(s):  
Marcel Escudier

This chapter starts by introducing the concept of a boundary layer and the associated boundary-layer approximations. The laminar boundary-layer equations are then derived from the Navier-Stokes equations. The assumption of velocity-profile similarity is shown to reduce the partial differential boundary-layer equations to ordinary differential equations. The results of numerical solutions to these equations are discussed: Blasius’ equation, for zero-pressure gradient, and the Falkner-Skan equation for wedge flows. Von Kármán’s momentum-integral equation is derived and used to obtain useful results for the zero-pressure-gradient boundary layer. Pohlhausen’s quartic-profile method is then discussed, followed by the approximate method of Thwaites. The chapter concludes with a qualitative account of the way in which aerodynamic lift is generated.


1971 ◽  
Vol 47 (4) ◽  
pp. 713-736 ◽  
Author(s):  
W. Roger Briley

The flow in a two-dimensional laminar separation bubble is analyzed by means of finite-difference solutions to the Navier-Stokes equations for incompressible flow. The study was motivated by the need to analyze high-Reynolds-number flow fields having viscous regions in which the boundary-layer assumptions are questionable. The approach adopted in the present study is to analyze the flow in the immediate vicinity of the separation bubble using the Navier-Stokes equations. It is assumed that the resulting solutions can then be patched to the remainder of the flow field, which is analyzed using boundary-layer theory and inviscid-flow analysis. Some of the difficulties associated with patching the numerical solutions to the remainder of the flow field are discussed, and a suggestion for treating boundary conditions is made which would permit a separation bubble to be computed from the Navier-Stokes equations using boundary conditions from inviscid and boundary-layer solutions without accounting for interaction between individual flow regions. Numerical solutions are presented for separation bubbles having Reynolds numbers (based on momentum thickness) of the order of 50. In these numerical solutions, separation was found to occur without any evidence of the singular behaviour at separation found in solutions to the boundary-layer equations. The numerical solutions indicate that predictions of separation by boundary-layer theory are not reliable for this range of Reynolds number. The accuracy and validity of the numerical solutions are briefly examined. Included in this examination are comparisons between the Howarth solution of the boundary-layer equations for a linearly retarded freestream velocity and the corresponding numerical solutions of the Navier-Stokes equations for various Reynolds numbers.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


Author(s):  
Djordje Romanic ◽  
Horia Hangan

Analytical and semi-empirical models are inexpensive to run and can complement experimental and numerical simulations for risk analysis-related applications. Some models are developed by employing simplifying assumptions in the Navier-Stokes equations and searching for exact, but many times inviscid solutions occasionally complemented by boundary layer equations to take surface effects into account. Other use simple superposition of generic, canonical flows for which the individual solutions are known. These solutions are then ensembled together by empirical or semi-empirical fitting procedures. Few models address turbulent or fluctuating flow fields, and all models have a series of constants that are fitted against experiments or numerical simulations. This chapter presents the main models used to provide primarily mean flow solutions for tornadoes and downbursts. The models are organized based on the adopted solution techniques, with an emphasis on their assumptions and validity.


2019 ◽  
Vol 224 ◽  
pp. 02003
Author(s):  
Andrey Shobukhov

We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of the linear electric potential variation for the uniform ion distribution and compare analytical results with numerical solutions. The developed model successfully describes the stability loss of the steady state solution and demonstrates the emerging of spatially non-uniform distribution of the electric potential. However, this model should be generalized by accounting for the convective movement via the addition of the Navier-Stokes equations in order to substantially extend its application field.


Sign in / Sign up

Export Citation Format

Share Document