Dynamic Calibration of a Coaxial Thermocouples for Short Duration Transient Measurements

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Rakesh Kumar ◽  
Niranjan Sahoo

Coaxial thermocouple sensors are suitable for measuring highly transient surface heat fluxes because the response times of these sensors are very small (∼0.1 ms). These robust sensors have the flexibility of mounting them directly on the surface of any geometry. So, they have been routinely used in ground-based impulse facilities as temperature sensors where rapid changes in heat loads are expected on aerodynamic models. Subsequently, the surface heat fluxes are predicted from the transient temperatures by appropriate one-dimensional heat conduction modeling for semi-infinite body. In this backdrop, the purpose of this work is to design and fabricate K-type coaxial thermocouples in-house and calibrate them under similar nature of heat loads by using simple laboratory instruments. Here, two methods of dynamic calibration of coaxial thermocouples have been discussed, where the known step loads are applied through radiation and conduction modes of heat transfer. Using appropriate one dimensional heat conduction modeling, the surface heat fluxes are predicted from the measured temperature histories and subsequently compared with the input heat loads. The recovery of surface heat flux from laser based calibration experiment under-predicts by 4% from its true input heat load. Similarly, recovery of surface heat flux from the conduction mode calibration experiments under-predicts 6% from its true input value. Further, finite-element based numerical study is performed on the coaxial thermocouple model to obtain surface temperatures with same heat loads as used in the experiments. The recovery of surface temperatures from finite element simulation is achieved within an accuracy of ±0.3% from the experiment.

1992 ◽  
Vol 114 (3) ◽  
pp. 553-557 ◽  
Author(s):  
T. R. Hsu ◽  
N. S. Sun ◽  
G. G. Chen ◽  
Z. L. Gong

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete point. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.


Author(s):  
Kannan Subramanian ◽  
Harish P. Cherukuri

An inverse method for predicting surface heat fluxes as functions of time and space was developed and applied to several one-dimensional problems by Ling et al. [1]. The method is based on the Galerkin finite element method and takes advantage of the linearity between the computed temperatures and the instantaneous surface heat fluxes. In the present work, the method is extended to two-dimensions and applications are made to a rectangular domain and an axisymmetric domain. Several possibilities are considered for solution stabilization and the effect of these approximations on the flux predictions is analysed. Results from a study of the sensitivity of the fluxes to the temperature sensor locations are also presented.


Author(s):  
Rakesh Kumar ◽  
Jayesh. P ◽  
Niranjan Sahoo

A procedure to solve inverse heat conduction problem (IHCP) is to derive surface heat flux and temperature from temperature change inside a solid. The method proves to be very useful and powerful when a direct measurement of surface heat flux and temperature is difficult, owing to several working condition. The literature reviewed here discussion one dimensional inverse heat conduction problem. Procedure, criteria, methods and important results of other investigation are briefly discussed.


Author(s):  
Li-Zhi Shen ◽  
Chun-Chieh Wu ◽  
Falko Judt

AbstractThis study attempts to understand how surface heat fluxes in different storm regions affect tropical cyclone (TC) size. The Advanced Research Weather Research and Forecasting (ARW-WRF) model (version 3.5.1) is used to simulate Typhoon Megi (2016). A series of numerical experiments are carried out, including a control simulation and several sensitivity experiments with surface heat fluxes suppressed in different TC regions [to mimic the reduction of the Wind-Induced Surface Heat Exchange (WISHE) feedback in the inner and/or outer core]. The results show that with surface heat fluxes suppressed in the entire domain, the TC tends to be smaller. Meanwhile, the TC size is more sensitive to the surface heat flux change in the outer core than to that in the inner core. Suppressing surface heat fluxes can weaken the rainbands around the suppressed area, which in turn slows down the secondary circulation. When the surface heat flux is suppressed in the inner-core region, the weakening of the secondary circulation associated with the diminished inner rainbands is limited to the inner core region, and only slightly affects the absolute angular momentum import from the outer region, thus having negligible impact on TC size. However, suppression of surface heat fluxes in the outer-core region leads to less active outer rainbands and a more substantial weakening of secondary circulation. This results in less absolute momentum import from the outer region, and in turn, a smaller TC.


1980 ◽  
Vol 102 (2) ◽  
pp. 168-176 ◽  
Author(s):  
B. R. Bass

The calculation of the surface temperature and surface heat flux from a measured temperature history at an interior point of a body is identified in the literature as the inverse heat conduction problem. This paper presents, to the author’s knowledge, the first application of a solution technique for the inverse problem that utilizes a finite element heat conduction model and Beck’s nonlinear estimation procedure. The technique is applicable to the one-dimensional nonlinear model with temperature-dependent thermophysical properties. The formulation is applied first to a numerical example with a known solution. The example treated is that of a periodic heat flux imposed on the surface of a rod. The computed surface heat flux is compared with the imposed heat flux to evaluate the performance of the technique in solving the inverse problem. Finally, the technique is applied to an experimentally determined temperature transient taken from an interior point of an electrically-heated composite rod. The results are compared with those obtained by applying a finite difference inverse technique to the same data.


Author(s):  
Anil Kumar Rout ◽  
Soumya Ranjan Nanda ◽  
Niranjan Sahoo ◽  
Pankaj Kalita ◽  
Vinayak Kulkarni

Abstract The present investigations provide a pathway for implementation of soft computing based Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for prediction of surface heat flux from short duration temperature measurement in shock tubes or shock tunnels. Computational modeling of a co-axial thermal probe is carried out to get the necessary temperature-time histories for different temporal variations of applied heat loads. Different possible inputs are assessed while defining the most suitable ANFIS structure for the recovery of step or ramp heat loads. This proposition is then tested for recovery of heat flux in a given range or of given time history. In each case, the uncertainty band is found to be in the acceptable range. The final assessment of this novel methodology is performed for recovery of heat flux signal from temperature measurement in a shock tube-based experiment. An in-house fabricated fast response coaxial thermal probe (CTP), prepared from chromel (3.25 mm diameter and 10 mm length) and constantan (0.91mm diameter and 15 mm length) is employed for these experiments. The surface heat flux recovered from the experimental signal using ANFIS is seen to have excellent agreement with the conventional analytical method in terms of both trend and magnitude, within an uncertainty band of ± 2%. Therefore present investigations advocate the use of soft computing technique for heat flux recovery in a short duration temperature measurement due to its accuracy of prediction, lesser complexities in mathematical modeling, and being less computationally intensive.


2014 ◽  
Vol 15 (3) ◽  
pp. 921-937 ◽  
Author(s):  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Zhongbo Su ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
...  

ABSTRACT Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (Tsfc) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. In this study, the performance of various z0h and z0m schemes developed for the Noah land surface model is assessed for a high-altitude site (3430 m) on the northeastern part of the Tibetan Plateau. Based on the in situ surface heat fluxes and profile measurements of wind and temperature, monthly variations of z0m and diurnal variations of z0h are derived through application of the Monin–Obukhov similarity theory. These derived values together with the measured heat fluxes are utilized to assess the performance of those z0m and z0h schemes for different seasons. The analyses show that the z0m dynamics are related to vegetation dynamics and soil water freeze–thaw state, which are reproduced satisfactorily with current z0m schemes. Further, it is demonstrated that the heat flux simulations are very sensitive to the diurnal variations of z0h. The newly developed z0h schemes all capture, at least over the sparse vegetated surfaces during the winter season, the observed diurnal variability much better than the original one. It should, however, be noted that for the dense vegetated surfaces during the spring and monsoon seasons, not all newly developed schemes perform consistently better than the original one. With the most promising schemes, the Noah simulated sensible heat flux, latent heat flux, Tsfc, and soil temperature improved for the monsoon season by about 29%, 79%, 75%, and 81%, respectively. In addition, the impact of Tsfc calculation and energy balance closure associated with measurement uncertainties on the above findings are discussed, and the selection of the appropriate z0h scheme for applications is addressed.


2006 ◽  
Vol 19 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Xiaoqing Wu ◽  
Stephen Guimond

Abstract Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) simulations are conducted to quantify the enhancement of surface sensible and latent heat fluxes by tropical precipitating cloud systems for 20 days (10–30 December 1992) during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The mesoscale enhancement appears to be analogous across both 2D and 3D CRMs, with the enhancement for the sensible heat flux accounting for 17% of the total flux for each model and the enhancement for the latent heat flux representing 18% and 16% of the total flux for 2D and 3D CRMs, respectively. The convection-induced gustiness is mainly responsible for the enhancement observed in each model simulation. The parameterization schemes of the mesoscale enhancement by the gustiness in terms of convective updraft, downdraft, and precipitation, respectively, are examined using each version of the CRM. The scheme utilizing the precipitation was found to yield the most desirable estimations of the mean fluxes with the smallest rms error. The results together with previous findings from other studies suggest that the mesoscale enhancement of surface heat fluxes by the precipitating deep convection is a subgrid process apparent across various CRMs and is imperative to incorporate into general circulation models (GCMs) for improved climate simulation.


Sign in / Sign up

Export Citation Format

Share Document