Impingement Cooling of Electronics

1992 ◽  
Vol 114 (3) ◽  
pp. 607-613 ◽  
Author(s):  
B. R. Hollworth ◽  
M. Durbin

Experiments were conducted to determine the performance of a system of low-velocity air jets used to cool a simulated electronics package. The test model consisted of a uniform array of rectangular elements mounted to a circuit board. Each element was cooled by a cluster of four jets, and the spent fluid was vented at one end of the channel formed between the circuit board and the plate from which the jets were discharged. Reported are measurements of system pressure drop and convective heat transfer coefficients for elements at various sites within the array. Results indicate that (for the geometry tested) the largest portion of the total pressure drop occurs across the jet orifices. Further, the crossflow of spent air appears to enhance heat transfer for those elements near the exit end of the channel.

Author(s):  
Jian-jun Sun ◽  
Jing-xiang Chen ◽  
David J. Kukulka ◽  
Kan Zhou ◽  
Wei Li ◽  
...  

An experiment investigation was performed using R410A in order to determine the single-phase and evaporation heat transfer coefficients on the outside of (i) a smooth tube; (ii) herringbone tube; and (iii) the newly developed Vipertex enhanced surface 1EHT tube; all with the same external diameter (12.7 mm). The nominal evaporation temperature is 279 K, with inlet and outlet qualities of 0.1 and 0.8. Mass fluxes ranged from 10 to 40 kg m−2s−1. Results suggest that the 1EHT tube has excellent heat transfer performance but a higher pressure drop when compared to a smooth tube. Evaporation heat transfer coefficient for the 1EHT is lower than the herringbone tube and the pressure drop is almost the same.


Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180° bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross sections, respectively, to achieve an engine-similar configuration. Within the channels rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


1979 ◽  
Vol 101 (2) ◽  
pp. 211-216 ◽  
Author(s):  
N. Cur ◽  
E. M. Sparrow

The heat transfer and pressure drop characteristics for an array of colinear, equally spaced plates aligned parallel to the flow in a flat rectangular duct have been studied experimentally. The periodic interruptions (i.e., the gaps between the plates) preclude the attainment of hydrodynamic and thermal development of the type that is encountered in conventional duct flows, but a periodic fully developed regime can exist. Measurements of the heat transfer coefficients for the successive plates of the array affirmed the periodically developed regime and demonstrated the developmental pattern leading to its attainment. The thickness of the plates in the array was varied parametrically. In general, the Nusselt number increases with plate thickness. Thickness-related increases in the fully developed Nusselt number of up to 65 percent were encountered. The presence of the interruptions serves to augment the heat transfer coefficients. In the fully turbulent regime, the heat transfer coefficients are on the order of twice those for a conventional duct flow. The pressure drop also increases with the plate thickness.


2004 ◽  
Vol 126 (4) ◽  
pp. 528-534 ◽  
Author(s):  
S. B. Sathe ◽  
B. G. Sammakia

The results of a study of a new and unique high-performance air-cooled impingement heat sink are presented. An extensive numerical investigation of the heat sink performance is conducted and is verified by experimental data. The study is relevant to cooling of high-power chips and modules in air-cooled environments and applies to workstations or mainframes. In the study, a rectangular jet impinges on a set of parallel fins and then turns into cross flow. The effects of the fin thickness, gap nozzle width and fin shape on the heat transfer and pressure drop are investigated. It is found that pressure drop is reduced by cutting the fins in the central impingement zone without sacrificing the heat transfer due to a reduction in the extent of the stagnant zone. A combination of fin thicknesses of the order of 0.5 mm and channel gaps of 0.8 mm with appropriate central cutout yielded heat transfer coefficients over 1500 W/m2 K at a pressure drop of less than 100 N/m2, as is typically available in high-end workstations. A detailed study of flow-through heat sinks subject to the same constraints as the impingement heat sink showed that the flow-through heat sink could not achieve the high heat transfer coefficients at a low pressure drop.


2002 ◽  
Vol 124 (5) ◽  
pp. 975-978 ◽  
Author(s):  
Li Yong and ◽  
K. Sumathy

Quasi-local absorption heat transfer coefficients and pressure drop inside a horizontal tube absorber have been investigated experimentally, with R-22/DMA as the working pair. The absorber is a counterflow coaxial tube-in-tube heat-exchanger with the working fluid flowing in the inner tube while the water moves through the annulus. A large temperature gliding has been experienced during the absorption process. Experimental results show that the heat transfer coefficient of the forced convective vapor absorption process is higher compared to the vertical falling film absorption. A qualitative study is made to analyze the effect of mass flux, vapor quality and solution concentration on pressure drop and heat transfer coefficients. On the basis of the experimental results, a new correlation is proposed whereby the two-phase heat transfer is taken as a product of the forced convection of the absorption and the combined effect of heat and mass transfer at the interface. The correlation is found to predict the experimental data almost within 30 percent.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Bin Ren ◽  
Xiaoying Tang ◽  
Hongliang Lu ◽  
Dongliang Fu ◽  
Yannan Du ◽  
...  

It is the simplest and most feasible method to enhance heat transfer by replacing the smooth tube with various kinds of special-shaped enhanced tubes. In this paper, the characteristics of condensation and flow resistance inside horizontal corrugated low finned tubes were studied experimentally. The effects of steam inlet conditions and condensation tubes structural parameters were analyzed. The results showed that the heat transfer performance inside corrugated low finned tubes was greater than that inside smooth tubes. Like inside smooth tubes, the heat transfer coefficients increased with the vapor quality and steam mass flux. But the enhancement rate showed the opposite trend. And the heat transfer coefficients inside corrugated low finned tubes increased with the decrease of pitch and increase of protrusion height. Meanwhile, the variation trend of pressure drop gradient changing with inlet conditions and construal parameters was consistent with trend of heat transfer coefficient. The performance evaluation criteria were used to evaluate the comprehensive performance. It was found that the maximum performance evaluation factor was acquired at the minimum vapor quality and mass flux. The maximum value was 2.24 happened in the tube with pitch of 6 mm and height of 0.7mm. Finally, both the correlation for heat transfer coefficient and correlation for pressure drop gradient were developed by fitting experimental data. And this would provide calculation foundations for the design of horizontal condensers with corrugated low finned tubes.


2010 ◽  
Vol 18 (02) ◽  
pp. 85-100 ◽  
Author(s):  
C. Y. PARK ◽  
P. S. HRNJAK

This paper presents a review of differences and similarities of in-tube heat transfer and pressure drop between ammonia (NH3) and carbon dioxide (CO2) from the perspective of the design of heat exchangers for NH3 two-stage and CO2/NH3 cascade refrigeration systems. The focus is on differences in thermophysical properties and thus different characteristics of heat transfer and pressure drop. A brief summary of published literatures about CO2/NH3 cascade refrigeration systems is provided and literature review of available correlations and developed correlations are presented for flow boiling and condensation heat transfer and pressure drop. Because of large deviation of calculated values with exiting correlations from measured results, a new correlation to predict flow condensation heat transfer coefficients was developed based on experimental results for CO2 at -15°C. From comparison of measured and predicted values, it is shown that some correlations, previously published in open literature, can be used to calculate flow boiling heat transfer coefficients for NH3 at -20°C, if a flow pattern can be appropriately determined for a flow condition. Also, it is presented that existing correlations can predict well the heat transfer coefficients for CO2 flow boiling at -15 and -30°C. It is shown that some correlations can predict pressure drop relatively well for NH3 and CO2 two-phase flow. The NH3 and CO2 flow evaporation heat transfer and pressure drop characteristics at -40°C are compared with predicted values.


Sign in / Sign up

Export Citation Format

Share Document