Sizing Design Sensitivity Analysis of Dynamic Frequency Response of Vibrating Structures

1992 ◽  
Vol 114 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Kyung K. Choi ◽  
Jae Hwan Lee

A continuum design sensitivity analysis method of dynamic frequency response of structural systems is developed using the adjoint variable and direct differentiation methods. A variational approach with a non-selfadjoint operator for complex variable is used to retain the continuum elasticity formulation throughout derivation of design sensitivity results. Sizing design variables such as thickness and cross-sectional area of structural components are considered for the design sensitivity analysis. A numerical implementation method of continuum design sensitivity analysis results is developed using postprocessing analysis data of COSMIC/NASTRAN finite element code to get the design sensitivity information of displacement and stress performance measures of the structures. The numerical method is tested using basic structural component such as a plate supported by shock absorbers and a vehicle chassis frame structure for sizing design variables. Accurate design sensitivity results are obtained even in the vicinity of resonance.

Author(s):  
Kyung K. Choi ◽  
Nam H. Kim ◽  
Mark E. Botkin

Abstract A unified design sensitivity analysis method for a meshfree shell structure with respect to sizing, shape, and configuration design variables is presented in this paper. A shear deformable shell formulation is characterized by a CAD connection, thickness degeneration, meshfree discretization, and nodal integration. The design variable is selected from the CAD parameters, and a consistent design velocity field is then computed by perturbing the surface geometric matrix. The material derivative concept is used to obtain a design sensitivity equation in the parametric domain. Numerical examples show the accuracy and efficiency of the proposed design sensitivity analysis method compared to the analytical solution and the finite difference solution.


1987 ◽  
Vol 109 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. K. Choi ◽  
J. L. T. Santos ◽  
M. C. Frederick

A numerical method is presented to implement structural design sensitivity analysis theory, using the versatility and convenience of existing finite element structural analysis programs. Design variables such as thickness and cross-sectional areas of components of individual members and built-up structures are considered. Structural performance functionals considered include displacement and stress. The method is also applicable for eigenvalue problem design sensitivity analysis. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. Thus design sensitivity analysis software does not have to be imbedded in an existing finite element code. Feasibility of the method is shown through analysis of several problems, including a built-up structure. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of finite difference perturbations.


2011 ◽  
Vol 2-3 ◽  
pp. 291-295
Author(s):  
Zhong Luo ◽  
Le Liang ◽  
Yan Yan Chen ◽  
Fei Wang

A parameter optimization method based on sensitivity analysis is presented for the structural optimization of variable section slender manipulator. Structure mechanism of a polishing robot is introduced firstly, and its stiffness model is established. Then, a design sensitivity analysis method and a sequential liner programming (SLP) strategy are proposed. In the beginning of the optimization, the design sensitivity analysis method can be used to select the sensitive design variables which can make the optimized results more efficient and accurate. And then, it can be used to improve the convergence during the process of the optimization. The design sensitivities are calculated using the finite difference method. The search for the final optimal structure is performed using the SLP method. Simulation results show that the structure optimization method is effective to enhance the stiffness of the manipulator, no matter when the manipulator suffers constant force or variable force. This work lays a theoretical foundation for the structural optimization for such manipulators.


1984 ◽  
Vol 106 (1) ◽  
pp. 119-125 ◽  
Author(s):  
M. Yoshimura

Design sensitivity analysis of frequency response is required to improve and optimize dynamic characteristics of machine-tool and other machine structures. This paper presents design sensitivity coefficients of receptance-frequency-response evaluative functions. Design sensitivity analyses of the evaluative functions are conducted with respect to design variables of fundamental structural elements in machines. A numerical example of the design sensitivity coefficients is given using a simplified structural model of a lathe, and the relationships between design variable changes and improvements in evaluative functions are described.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Most state-of-the-art multibody systems are multidisciplinary and encompass a wide range of components from various domains such as electrical, mechanical, hydraulic, pneumatic, etc. The design considerations and design parameters of the system can come from any of these domains or from a combination of these domains. In order to perform analytical design sensitivity analysis on a multidisciplinary system (MDS), we first need a uniform modeling approach for this class of systems to obtain a unified mathematical model of the system. Based on this model, we can derive a unified formulation for design sensitivity analysis. In this paper, we present a modeling and design sensitivity formulation for MDS that has been successfully implemented in the MIXEDMODELS (Multidisciplinary Integrated eXtensible Engine for Driving Metamodeling, Optimization and DEsign of Large-scale Systems) platform. MIXEDMODELS is a unified analysis and design tool for MDS that is based on a procedural, symbolic-numeric architecture. This architecture allows any engineer to add components in his/her domain of expertise to the platform in a modular fashion. The symbolic engine in the MIXEDMODELS platform synthesizes the system governing equations as a unified set of non-linear differential-algebraic equations (DAE’s). These equations can then be differentiated with respect to design to obtain an additional set of DAE’s in the sensitivity coefficients of the system state variables with respect to the system’s design variables. This combined set of DAE’s can be solved numerically to obtain the solution for the state variables and state sensitivity coefficients of the system. Finally, knowing the system performance functions, we can calculate the design sensitivity coefficients of these performance functions by using the values of the state variables and state sensitivity coefficients obtained from the DAE’s. In this work we use the direct differentiation approach for sensitivity analysis, as opposed to the adjoint variable approach, for ease in error control and software implementation. The capabilities and performance of the proposed design sensitivity analysis formulation are demonstrated through a numerical example consisting of an AC rectified DC power supply driving a slider crank mechanism. In this case, the performance functions and design variables come from both electrical and mechanical domains. The results obtained were verified by perturbation analysis, and the method was shown to be very accurate and computationally viable.


Author(s):  
Hyun-Seok Kim ◽  
Hong-Lae Jang ◽  
Min-Geun Kim ◽  
Seonho Cho

We have developed a multiscale design sensitivity analysis method for transient dynamics using a bridging scale method by a projection operator for scale decomposition. Employing a mass-weighted projection operator, we can fully decouple the equations of motion into fine and coarse scales using the orthogonal property of complimentary projector to the mass matrix. Thus, independent solvers in response analyses can be utilized for the fine scale analysis of molecular dynamic (MD) and the coarse scale analysis of finite element analysis. To reduce the size of problems and to improve the computational efficiency, a generalized Langevin equation is used for a localized MD analysis. Through demonstrative numerical examples, it turns out that the derived sensitivity analysis method is accurate and efficient compared with finite difference sensitivity.


2004 ◽  
Vol 261-263 ◽  
pp. 809-814
Author(s):  
Tae Hee Lee ◽  
J.J. Jung

Nonlinear analysis of anisotropic structures is described by using Hill's yield criterion that anisotropic yield contour is assumed to be retained its shape during the hardening process. Nonlinear constitutive equation of anisotropic material is derived using plastic potential concept. Linear strain hardening model is utilized and forward Euler method is employed as a stress integration method. Newton-Raphson method is implemented for numerical nonlinear analysis. Direct differentiation method differentiating directly the equilibrium equation with respect to design variables is applied to design sensitivity analysis of nonlinear anisotropic plate. The results of design sensitivity analysis are compared with those of finite difference method to verify the accuracy. Optimization is accomplished for a rectangular plate using evaluated sensitivity coefficients.


Author(s):  
H Zhou ◽  
D Li ◽  
S Cui

A three-dimensional numerical simulation using the boundary element method is proposed, which can predict the cavity temperature distributions in the cooling stage of injection moulding. Then, choosing the radii and positions of cooling lines as design variables, the boundary integral sensitivity formulations are deduced. For the optimum design of cooling lines, the squared difference between the objective temperature and the temperature of the cavity is taken as the objective function. Based on the optimization techniques with design sensitivity analysis, an iterative algorithm to reach the minimum value of the objective function is introduced, which leads to the optimum design of cooling lines at the same time.


Sign in / Sign up

Export Citation Format

Share Document