Prediction of Cascade Performance Using an Incompressible Navier–Stokes Technique

1991 ◽  
Vol 113 (4) ◽  
pp. 561-571 ◽  
Author(s):  
G. V. Hobson ◽  
B. Lakshminarayana

A fully elliptic, control volume solution of the two-dimensional incompressible Navier–Stokes equations for the prediction of cascade performance over a wide range is presented in this paper. The numerical technique is based on a new pressure substitution method. A Poisson equation is derived from the pressure-weighted substitution of the full momentum equations into the continuity equation. The analysis of a double circular arc compressor cascade is presented, and the results are compared with the available experimental data at various incidence angles. Good agreement is obtained for the blade pressure distribution, boundary layer and wake profiles, skin friction coefficient, losses and outlet angles. Turbulence effects are simulated by the low-Reynolds-number version of the k–ε turbulence model.

Author(s):  
G. V. Hobson ◽  
B. Lakshminarayana

A fully elliptic, control volume solution of the two-dimensional incompressible Navier-Stokes equations for the prediction of cascade performance over a wide incidence range is presented in this paper. The numerical technique is based on a new pressure substitution method. A Poisson equation is derived from the pressure weighted substitution of the full momentum equations into the continuity equation. The analysis of a double circular arc compressor cascade is presented, and the results are compared with the available experimental data at various incidence angles. Good agreement is obtained for the blade pressure distribution, boundary layer and wake profiles, skin friction coefficient, losses and outlet angles. Turbulence effects are simulated by the Low-Reynolds-Number version of the k-ε turbulence model.


1969 ◽  
Vol 36 (4) ◽  
pp. 687-692 ◽  
Author(s):  
G. J. Farris ◽  
G. J. Kidd ◽  
D. W. Lick ◽  
R. E. Textor

The interaction of a vortex with a stationary surface was studied both theoretically and experimentally. The flow field examined was that produced by radially inward flow through a pair of concentric rotating porous cylinders that were perpendicular to, and in contact with, a stationary flat plane. The complete Navier-Stokes equations were solved over a range of tangential Reynolds numbers from 0–300 and a range of radial Reynolds numbers from 0 to −13, the minus sign indicating radially inward flow. In order to facilitate the solution, the original equations were recast in terms of a dimensionless stream function, vorticity, and third variable related to the tangential velocity. The general validity of the numerical technique was demonstrated by the agreement between the theoretical and experimental results. Examination of the numerical results over a wide range of parameters showed that the entire flow field is very sensitive to the amount of radial flow, especially at the transition from zero radial flow to some finite value.


1999 ◽  
Vol 5 (1) ◽  
pp. 17-33 ◽  
Author(s):  
Y. S. Choi ◽  
S. H. Kang

A computer code predicting the flows through the centrifugal compressor with the radial vaneless diffuser was developed and applied to investigate the detailed flowfields, i.e., secondary flows and jet-wake type flow pattern in design and off-design conditions. Various parameters such as slip factors, aerodynamic blockages, entropy generation and two-zone modeling which are widely used in design and performance prediction, were discussed.A control volume method based on a general curvilinear coordinate system was used to solve the time-averaged Navier–Stokes equations and SIMPLER algorithm was used to solve the pressure linked continuity equation. The standardk-εturbulence model was used to obtain the eddy viscosity. Performance of the code was verified using the measured data for the Eckardt impeller.


1992 ◽  
Vol 114 (4) ◽  
pp. 936-943 ◽  
Author(s):  
Z. F. Dong ◽  
M. A. Ebadian

This paper numerically investigates the effects of buoyancy on fully developed laminar flow in a curved duct with an elliptic cross section. The flow of Newtonian fluids is assumed steady in terms of Boussinesq approximation. The curved elliptic duct is subjected to thermal boundary conditions of axially uniform heat flux and peripherally uniform wall temperature. The numerically generated boundary-fitted coordinate system is applied to discretize the solution domain of the elliptic duct, and the Navier-Stokes equations and the energy equation, including the curvature ratio, are solved by use of the control volume-based finite difference method. The solution covers a wide range of curvature ratios, and Dean and Grashof numbers. The results presented are displayed graphically and in tabular form to illustrate the buoyancy effect. It is further shown that buoyancy acts to increase both the Nusselt number and the friction factor and changes the distribution of the velocity and the temperature. The results for the curved circular duct with and without buoyancy are compared with the data available in the open literature for all cases. Also compared with the published data are the results of laminar flow in a curved elliptic duct, and very good agreement is obtained.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


2018 ◽  
Vol 855 ◽  
pp. 43-66 ◽  
Author(s):  
Ke Wu ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The dynamic response to shear of a fluid-filled square cavity with stable temperature stratification is investigated numerically. The shear is imposed by the constant translation of the top lid, and is quantified by the associated Reynolds number. The stratification, quantified by a Richardson number, is imposed by maintaining the temperature of the top lid at a higher constant temperature than that of the bottom, and the side walls are insulating. The Navier–Stokes equations under the Boussinesq approximation are solved, using a pseudospectral approximation, over a wide range of Reynolds and Richardson numbers. Particular attention is paid to the dynamical mechanisms associated with the onset of instability of steady state solutions, and to the complex and rich dynamics occurring beyond.


1998 ◽  
Vol 120 (1) ◽  
pp. 72-75 ◽  
Author(s):  
V. N. Kurdyumov ◽  
E. Ferna´ndez

A correlation formula, Nu = W0(Re)Pr1/3 + W1(Re), that is valid in a wide range of Reynolds and Prandtl numbers has been developed based on the asymptotic expansion for Pr → ∞ for the forced heat convection from a circular cylinder. For large Prandtl numbers, the boundary layer theory for the energy equation is applied and compared with the numerical solutions of the full Navier Stokes equations for the flow field and energy equation. It is shown that the two-terms asymptotic approximation can be used to calculate the Nusselt number even for Prandtl numbers of order unity to a high degree of accuracy. The formulas for coefficients W0 and W1, are provided.


1996 ◽  
Vol 310 ◽  
pp. 293-324 ◽  
Author(s):  
Oleg Yu. Zikanov

The solutions of the nonlinear and linearized Navier-Stokes equations are computed to investigate the instabilities and the secondary two- and three-dimensional regimes in the flow of an incompressible viscous fluid in a thin gap between two concentric differentially rotating spheres. The numerical technique is finite difference in the radial direction, spectral in the azimuthal direction, and pseudo-spectral in the meridional direction. The study follows the experiments by Yavorskaya, Belyaev and co-workers in which a variety of steady axisymmetric and three-dimensional travelling wave secondary regimes was observed in the case of a thin layer and both boundary spheres rotating. In agreement with the experimental results three different types of symmetry-breaking primary bifurcations of the basic equilibrium are detected in the parameter range under consideration.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Meriem Ammar ◽  
Zied Driss ◽  
Wajdi Chtourou ◽  
Mohamed Abid

AbstractThe aim of this paper is to study the effect of baffles length on the turbulent flows in stirred tanks. The hydrodynamic behaviour induced by a Rushton turbine (RT6) is numerically predicted by solving the Navier-Stokes equations in conjunction with the Renormalization Group (RNG) of the k-ɛ turbulence model. These equations are solved by a control volume discretization method. The numerical results from the application of the computational fluid dynamics (CFD) code Fluent with the multi-reference frame (MRF) model are presented in the vertical and horizontal planes in the impeller stream region. Our studies were carried out on three different systems. The most effective system was selected based on its calculated power consumption figure. All numerical results showed good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document