scholarly journals Fuel Cell Development for NASA’s Human Exploration Program: Benchmarking With “The Hydrogen Economy”

Author(s):  
John H. Scott

The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells have motivated them to be the subject of much study since their invention in the 19th century, but their relatively high life cycle costs have kept them as a “solution in search of a problem” for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA’s human spaceflight vehicles in the 1960s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990s, prospective environmental regulations have driven increased governmental and industrial interest in “green power” and “the hydrogen economy.” This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA’s Human Exploration program.

2004 ◽  
Vol 1 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Mark C. Williams ◽  
Bruce R. Utz ◽  
Kevin M. Moore

The U.S. Department of Energy’s (DOE) Office of Fossil Energy’s (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell turbine hybrid power generation systems for near term distributed generation (DG) markets with an emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions in research under the Solid-State Energy Conversion Alliance (SECA) initiative for the development and commercialization of modular, low cost, and fuel flexible SOFC systems. The SECA initiative, through advanced materials, processing and system integration research and development, will bring the fuel cell cost to $400 per kilowatt (kW) for stationary and auxiliary power unit (APU) markets. The President of the U.S. has launched us into a new hydrogen economy. The logic of a hydrogen economy is compelling. The movement to a hydrogen economy will accomplish several strategic goals. The U.S. can use its own domestic resources—solar, wind, hydro, and coal. The U.S. uses 20 percent of the world’s oil but has only 3 percent of resources. Also, the U.S. can reduce green house gas emissions. Clear Skies and Climate Change initiatives aim to reduce carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions. SOFCs have no emissions, so they figure significantly in these DOE strategies. In addition, DG—SOFCs, reforming, energy storage—has significant benefit for enhanced security and reliability. The use of fuel cells in cars is expected to bring about the hydrogen economy. However, commercialization of fuel cells is expected to proceed first through portable and stationary applications. This logic says to develop SOFCs for a wide range of stationary and APU applications, initially for conventional fuels, then switch to hydrogen. Like all fuel cells, the SOFC will operate even better on hydrogen than conventional fuels. The SOFC hybrid is a key part of the FutureGen plants. FutureGen is a major new Presidential initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power and other parts of the plant could produce hydrogen and sequester CO2. The hydrogen produced can be used in fuel cell cars and for SOFC DG applications.


Author(s):  
Roberto Bove ◽  
Piero Lunghi

Worldwide, the main power source to produce electric energy is represented by fossil fuels, principally used at the present time in large combustion power plants. The main environmental impacts of fossil fuel-fired power plants are the use of non-renewable resources and pollutants emissions. An improvement in electric efficiency would yield a reduction in emissions and resources depletion. In fact, if efficiency is raised, in order to produce an amount unit of electric energy, less fuel is required and consequently less pollutants are released. Moreover, higher efficiency leads to economic savings in operating costs. A generally accepted way of improving efficiency is to combine power plants’ cycles. If one of the combined plants is represented by a fuel cell, both thermodynamic efficiency and emissions level are improved. Fuel cells, in fact, are ultra-clean high efficiency energy conversion devices because no combustion occurs in energy production, but only electrochemical reactions and consequently no NOx and CO are produced inside the cell. Moreover, the final product of the reaction is water that can be released into the atmosphere without particular problems. Second generation fuel cells (Solid Oxide FC and Molten Carbonate FC) are particularly suitable for combining cycles, due to their high operating temperature. In previous works, the authors had analyzed the possibility of combining Molten Carbonate Fuel Cell (MCFC) plant with a Gas Turbine and then a MCFC with a Steam Turbine Plant. Results obtained show that both these configurations allow to obtain high conversion efficiencies and reduced emissions. In the present work, a comparison between MCFC-Gas Turbine and MCFC-Steam Turbine is conducted in order to evaluate the main advantages and disadvantages in adopting one solution instead of the other one.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


Author(s):  
Praveen Narasimhamurthy ◽  
Zakiul Kabir

UTC Fuel Cells (UTCFC) over the last few years has partnered with leading automotive and bus companies and developed Polymer Electrolyte Membrane (PEM) fuel-cell power plants for various transportation applications, for instance, automotive, buses, and auxiliary power units (APUs). These units are deployed in various parts of the globe and have been gaining field experience under both real world and laboratory environments. The longest running UTC PEM fuel cell stack in a public transport bus has accumulated over 1350 operating hours and 400 start-stop cycles. The longest running APU fuel cell stack has accrued over 3000 operating hours with more than 3200 start-stop cycles. UTCFC PEM fuel-cell systems are low noise and demonstrate excellent steady state, cyclic, and transient capabilities. These near ambient pressure, PEMFC systems operate at high electrical efficiencies at both low and rated power conditions.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012011
Author(s):  
Ziyi Du ◽  
Hongxu Zhan

Abstract Nowadays, many types of fuel cells have made significant progress. In 2014, they were applied to the production model Toyota’s FCHV-Adv. With their high efficiency and low pollution, fuel cells have gradually started to replace some traditional technologies in many energy applications and production industries and have become a hot topic of interest in recent years. Depending on the type of fuel, there are various types, and different fuel cells work on different principles, leading to differences in their performance. This paper lists the different fuel cells and their application scenarios in the automotive industry. In addition, the use of hydrogen in fuel cell vehicles is also a major concern. This paper briefly discusses the current hydrogen production and four different types of fuel cell vehicles and their energy management strategies. All the technical advantages of fuel cells and hydrogen energy are ultimately reflected in fuel cell vehicles, and this paper describes the current challenges and future possibilities.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1361 ◽  
Author(s):  
Jae-Hyeong Yu ◽  
Chang-Whan Lee

Molten carbonate fuel cells (MCFCs) are high-operating-temperature fuel cells with high efficiency and fuel diversity. Electrochemical reactions in MCFCs are exothermic. As the size of the fuel cells increases, the amount of the heat from the fuel cells and the temperature of the fuel cells increase. In this work, we investigated the relationship between the fuel cell stack size and performance by applying computational fluid dynamics (CFD). Three flow types, namely co-flow, cross-flow, and counter-flow, were studied. We found that when the size of the fuel cells increased beyond a certain value, the size of the fuel cell no longer affected the cell performance. The maximum fuel cell temperature converged as the size of the fuel cell increased. The temperature and current density distribution with respect to the size showed a very similar distribution. The converged maximum temperature of the fuel cells depended on the gas flow condition. The maximum temperature of the fuel cell decreased as the amount of gas in the cathode size increased.


Author(s):  
Frank P. Bevc ◽  
Wayne L. Lundberg ◽  
Dennis M. Bachovchin

The integration of the solid oxide fuel cell (SOFC) and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas. that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for three power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described, and characteristics of key components are summarized. In addition, plant design-point efficiency estimates are presented, as well as values of other plant performance parameters.


Sign in / Sign up

Export Citation Format

Share Document