Wireless Swimming Microrobot: Design, Analysis, and Experiments

Author(s):  
Yongshun Zhang ◽  
Guangjun Liu

This paper presents a bidirectional wireless swimming microrobot that has been developed, analyzed, and experimentally tested. The robot is developed based on fin beating propulsion, using giant magnetostrictive films for head and tail fins. An innovative drive approach, using separate second order resonance frequencies of the head and tail fins to generate forward and backward thrusts, is proposed and implemented on a bidirectional swimming microrobot prototype. Dynamic model of the proposed microrobot has been derived based on theoretical analysis. Simulation and experimental results have demonstrated the feasibility of the proposed drive approach and design. The developed swimming microrobot features a low driving frequency, low power consumption, and a large range of swimming speed in both the forward and backward directions.

2012 ◽  
Vol 182-183 ◽  
pp. 427-430
Author(s):  
Li Feng Wei ◽  
Liang Cheng ◽  
Xing Man Yang

A adaptive control method of the pulse demagnetizer was presented, Can adjust the strength of the charge current automatically according to the changes of the magnetic content to ensure the constant of the magnetic field.The experimental results have shown that it has the advantages of low power consumption, strong anti-interference capability, stable and reliable operation, long life and good demagnetizing effect, when compared to the conventional demagnetizers.


2019 ◽  
Vol 24 (5) ◽  
pp. 2406-2415 ◽  
Author(s):  
Samira Asiri ◽  
Farshad Khademianzadeh ◽  
Amirhassan Monadjemi ◽  
Payman Moallem

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3166
Author(s):  
Jianfeng Hong ◽  
Fu Chen ◽  
Ming He ◽  
Sheng Wang ◽  
Wenxiang Chen ◽  
...  

This paper presents a study of a piezoelectric energy harvesting circuit based on low-power-consumption synchronized switch technology. The proposed circuit includes a parallel synchronized switch harvesting on inductor interface circuit (P-SSHI) and a step-down DC-DC converter. The synchronized switch technology is applied to increase the conversion efficiency of the circuit. The DC-DC converter is used to accomplish the impedance matching for different loads. A low-power-consumption microcontroller and discrete components are used to build the P-SSHI interface circuit. The study starts with theoretical analysis and simulations of the P-SSHI interface circuit. Simulations and experiments were conducted to validate the theoretical analysis. The experimental results show that the maximum energy harvested by the system with a P-SSHI interface circuit is 231 μW, which is 2.89 times that of a system without the P-SSHI scheme. The power consumption of the P-SSHI interface circuit can be as low as 10.6 μW.


VLSI Design ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
D. P. Dimitrov ◽  
T. K. Vasileva

An 8-bit semiflash ADC is reported that uses a single array of 15 comparators for both the coarse and the fine conversion. Conversion is implemented in two steps. First, an estimate is made of the 4 most significant bits, which are then memorized in the output latch. Next, the remaining 4 bits are evaluated by the same array of comparators. The auto-zeroed comparators also perform the function of a sample-and-hold circuit. In the proposed 8-bit semiflash ADC, there are no sample-and-hold circuit, no DAC, no subtraction circuit, and no residue amplifier. As a result, a moderate conversion speed has been combined with a drastically reduced power consumption. The ADC was fabricated in a standard 0.6 μm double-poly, double-metal CMOS process. Experimental results show monotonic conversion with very low integral and differential nonlinearities. These features, combined with the ultra-low power consumption, make the proposed circuit very suitable for low-power mixed-signal applications.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document