The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot

2019 ◽  
Vol 24 (5) ◽  
pp. 2406-2415 ◽  
Author(s):  
Samira Asiri ◽  
Farshad Khademianzadeh ◽  
Amirhassan Monadjemi ◽  
Payman Moallem
Author(s):  
Yongshun Zhang ◽  
Guangjun Liu

This paper presents a bidirectional wireless swimming microrobot that has been developed, analyzed, and experimentally tested. The robot is developed based on fin beating propulsion, using giant magnetostrictive films for head and tail fins. An innovative drive approach, using separate second order resonance frequencies of the head and tail fins to generate forward and backward thrusts, is proposed and implemented on a bidirectional swimming microrobot prototype. Dynamic model of the proposed microrobot has been derived based on theoretical analysis. Simulation and experimental results have demonstrated the feasibility of the proposed drive approach and design. The developed swimming microrobot features a low driving frequency, low power consumption, and a large range of swimming speed in both the forward and backward directions.


Author(s):  
Ammar Yasir Hamood Al Rawahi ◽  
Shaik Mazhar Hussain ◽  
Anilloy Frank

In this paper, We design and implement IOT based low power system that can be used in employee meeting rooms. The design is based on number of employees entering and leaving the room and automates room AC, lights and room freshners using relay device. The system designed counts number of employees entering the room using IR device and updates the number using counter and automates electrical appliances of the room and when leaving automatically switches off the devices. The power consumed is updated using ESP 8266 in the cloud called thing speak where the data can be evaluated and analyzed per day and per month. The system has 20*4 LCD which displays the complete details of the employees and electrical appliances. The working of the system starts with the entering of an employee in the room, the buzzer beeps and LED turns on. Arduino Mega is used as a central processor that controls all the appliances. The code is written in C and simulation is done using Proteus ISIS. Finally, the implemented system shows the energy consumption per day and per month and a detailed comparative analysis is done with and without connecting the system which shows a better saving of energy in the employee room. The methodology adapted for our work is V-methodology.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 535
Author(s):  
Antonia Silvestri ◽  
Nicola Di Trani ◽  
Giancarlo Canavese ◽  
Paolo Motto Ros ◽  
Leonardo Iannucci ◽  
...  

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document