Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties

1981 ◽  
Vol 103 (4) ◽  
pp. 280-292 ◽  
Author(s):  
R. C. Lee ◽  
E. H. Frank ◽  
A. J. Grodzinsky ◽  
D. K. Roylance

The compressive stiffness of articular cartilage was examined in oscillatory confined compression over a wide frequency range including high frequencies relevant to impact loading. Nonlinear behavior was found when the imposed sinusoidal compression amplitude exceeded a threshold value that depended on frequency. Linear behavior was attained only by suitable control of the compression amplitude. This was enabled by real time Fourier analysis of data which provided an accurate assessment of the extent of nonlinearity. For linear viscoelastic behavior, a stiffness could be defined in the usual sense. The dependence of the stiffness on ionic strength and proteoglycan content showed that electrostatic forces between matrix charge groups contribute significantly to cartilage’s compressive stiffness over the 0.001 to 20 Hz frequency range. Sinusoidal streaming potentials were also generated by oscillatory compression. A theory relating the streaming potential field to the fluid velocity field is derived and used to interpret the data. The observed magnitude of the streaming potential suggests that interstitial fluid flow is significant to cartilage behavior over the entire frequency range. The use of simultaneous streaming potential and stiffness data with an appropriate theory appears to be an important tool for assessing the relative contribution of fluid flow, intrinsic matrix viscoelasticity, or other molecular mechanisms to energy dissipation in cartilage. This method is applicable in general to hydrated, charged polymers.

2000 ◽  
Vol 122 (4) ◽  
pp. 336-346 ◽  
Author(s):  
W. Michael Lai ◽  
Van C. Mow ◽  
Daniel D. Sun ◽  
Gerard A. Ateshian

The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245–258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169–180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chodrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the results from this study offer new challenges for the understanding of possible mechanisms that control chondrocyte biosyntheses. [S0148-0731(00)00604-X]


2000 ◽  
Author(s):  
V. C. Mow ◽  
X. E. Guo ◽  
D. D. Sun ◽  
W. M. Lai

Abstract The objective of this paper is to provide an overall discussion of the biomechanical factors that are required to analyze and interpret data from the explant experiments and to present a description of some of the mechano-electrochemical events in the extracellular matrix (ECM) surrounding chondrocytes occurring within cartilage explants during loading. Five common loading cases of cartilage explants are discussed: hydrostatic pressure, osmotic pressure, permeation, confined compression and unconfined compression. Details of such surface loadings on the internal ECM pressure, fluid and ion flows, deformation and electrical fields are given. Similarities and differences in these quantities due to these five types of loadings are specifically noted. For example, it is noted that there is no practical mechanical loading condition that can be achieved in the laboratory to produce effects that are equal to the effects of osmotic pressure loading within the ECM. Some counter-intuitive effects from these loadings are also described. Further, the significance of flow induced compression of the ECM is emphasized, since this frictional drag effect is likely to be one of the major effects of fluid flow through the porous-permeable ECM. Associated streaming potential and diffusion potential and their dependence on the fixed charge density, are discussed in relation to the fluid flow through the charged ECM and the flow-induced compaction effect. Understanding of the differences among these explant loading cases is important; this can provide clearer understanding of the metabolic responses from chondrocytes in explant loading experiments.


1931 ◽  
Vol 14 (5) ◽  
pp. 563-573 ◽  
Author(s):  
H. A. Abramson ◽  
E. B. Grossman

1. The conditions are described which are necessary for the comparison of certain types of electrokinetic potentials. An experimental comparison is made of (a) electrophoresis of quartz particles covered with egg albumin; and (b) similar experiments by Briggs on streaming potentials. A slight, consistent, difference is found between the electrophoretic potential and the streaming potential. This difference is probably due to the difference in the protein preparations used rather than to real difference in the electrophoretic and streaming potentials. 2. Data are given which facilitate the measurements and enhance the precision of the estimation of electrical mobilities of microscopic particles.


2002 ◽  
Vol 35 (7) ◽  
pp. 903-909 ◽  
Author(s):  
R.K Korhonen ◽  
M.S Laasanen ◽  
J Töyräs ◽  
J Rieppo ◽  
J Hirvonen ◽  
...  

1969 ◽  
Vol 172 (1028) ◽  
pp. 203-225 ◽  

A rapid procedure based on that of Smyth & Wright (1966) is described for obtaining a measure of the permeability of rabbit gall-bladder epithelium to non-electrolytes. The underlying principles are that concentration gradients of permeant molecules produce lower rates of osmotic flow across a membrane than does the same gradient of an impermeant molecule, and that streaming potentials in the gall-bladder are directly proportional to the flow rate. Hence reflexion coefficients (cr’s) were calculated as the ratio of the streaming potential produced by a 0* 1 m gradient of the test solute to the streaming potential produced by a 0T m gradient of an impermeant reference solute, sucrose. The method yields results in agreement with those obtained in the gall-bladder by a zero-flow procedure. In general, the patterns of permeation derived are similar to those obtained in other tissues by the same procedure, by other osmotic procedures, or by direct chemical or tracer methods. The advantages of the method are that (a) large numbers of cr’s can be determined in one experiment with an average standard deviation of ± 8 % ; and (b) the minimum elapsed time between the preparation of a solution and the determination of or is about 90 s, so that cr’s may be obtained for some non-electrolytes subject to gradual chemical transformation in aqueous solution, such as aldehydes. The principles underlying osmotic methods of measuring permeability, and the effects of unstirred layers, are discussed.


2021 ◽  
pp. 1-10
Author(s):  
Yongsheng Liu ◽  
Xing Qin ◽  
Yuchen Sun ◽  
Zijun Dou ◽  
Jiansong Zhang ◽  
...  

Abstract Aiming at the oscillation drag reduction tool that improves the extension limit of coiled tubing downhole operations, the fluid hammer equation of the oscillation drag reducer is established based on the fluid hammer effect. The fluid hammer equation is solved by the asymptotic method, and the distribution of fluid pressure and flow velocity in coiled tubing with oscillation drag reducers is obtained. At the same time, the axial force and radial force of the coiled tubing caused by the fluid hammer oscillator are calculated according to the momentum theorem. The radial force will change the normal contact force of the coiled tubing which has a great influence on frictional drag. The results show that the fluid flow rate and pressure decrease stepwise from the oscillator position to the wellhead position, and the fluid flow rate and pressure will change abruptly during each valve opening and closing time. When the fluid passes through the oscillator, the unit mass fluid will generate an instantaneous axial tension due to the change in the fluid velocity, thereby converting the static friction into dynamic friction, which is conducive to the extend limit of coiled tubing.


Author(s):  
Foukeea Qasim ◽  
Tian-Chuan Sun ◽  
S. Z. Abbas ◽  
W. A. Khan ◽  
M. Y. Malik

This paper aims to investigate the time-dependent stagnation point flow of an Oldroyd-B fluid subjected to the modified Fourier law. The flow into a vertically stretched cylinder at the stagnation point is discussed. The heat flux model of a non-Fourier is intended for the transfer of thermal energy in fluid flow. The study is carried out on the surface heating source, namely the surface temperature. The developed nonlinear partial differential equation for regulating fluid flow and heat transport is transformed via appropriate similarity variables into a nonlinear ordinary differential equation. The development and analysis of convergent series solutions were considered for velocity and temperature. Prandtl number numerical values are computed and investigated. This study’s findings are compared to the previous findings. By making use of the bvp4c Matlab method, numerical solutions are obtained. Besides, high buoyancy parameter values are found to increase the fluid velocity for the stimulating approach. By improving the thermal relaxation time parameter values, heat transfer in the fluid flow decreases. The temperature field effects are displayed graphically.


Author(s):  
Michal Schmid ◽  
Fatih Bozkurt ◽  
Petr Pašcenko ◽  
Pavel Petržela

Abstract The work demonstrates, via a comprehensive study, the necessity of using a 3D CFD approach for heat exchanger (HTX) modelling within underhood vehicle simulation. The results are presented as the difference between 1D and 3D CFD approaches with a focus on auxiliary fluid (e.g. coolant) temperature prediction as a function of primary fluid (e.g. air) inlet conditions. It has been shown that the 1D approach could significantly underpredict auxiliary fluid inlet temperature due to neglecting the spatial distribution of primary fluid velocity magnitude. The resultant difference in the auxiliary fluid flow HTX inlet temperature is presented and discussed as a function of the Uniformity Index (UI) of the primary fluid flow velocity magnitude. Additionally, the 3D HTX model's importance is demonstrated in an industrial example of full 3D underhood simulation.


2021 ◽  
Author(s):  
Damien Jougnot ◽  
Luong Duy Thanh ◽  
Mariangeles Soldi ◽  
Jan Vinogradov ◽  
Luis Guarracino

<p>Understanding streaming potential generation in porous media is of high interest for hydrological and reservoir studies as it allows to relate water fluxes to measurable electrical potential distributions in subsurface geological settings. The evolution of streaming potential <span>stems</span> from electrokinetic coupling between water and electrical fluxes due to the presence of an electrical double layer at the interface between the mineral and the pore water. Two different approaches can be used to model and interpret the generation of the streaming potential in porous media: the classical coupling coefficient approach based on the Helmholtz-Smoluchowski equation, and the effective excess charge density. Recent studies based on both approaches use a mathematical up-scaling procedure that employs the so-called fractal theory. In these studies, the porous medium is represented by a bundle of tortuous capillaries characterized by a fractal capillary-size distribution law. The electrokinetic coupling between the fluid flow and electric current is obtained by averaging the processes that take place in a single capillary. In most cases, closed-form expressions for the electrokinetic parameters are obtained in terms of macroscopic hydraulic variables like permeability, saturation and porosity. In this presentation we propose a review of the existing fractal distribution models that predict the streaming potential in porous media and discuss their benefits compared against other published models.</p>


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
WeiLun Yu ◽  
XiaoGang Wu ◽  
HaiPeng Cen ◽  
Yuan Guo ◽  
ChaoXin Li ◽  
...  

Abstract Background Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. Methods To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. Results FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro–mesoscale models, verifying the correctness of the modeling. In macro–mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young’s modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar–canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. Conclusion Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


Sign in / Sign up

Export Citation Format

Share Document