Branching Pattern of Pulmonary Arterial Tree in Anesthetized Dogs

1986 ◽  
Vol 108 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Y. H. Liu ◽  
E. L. Ritman

The geometry of the pulmonary arterial tree of six adult dogs was measured by a high-speed, volume-scanning, X-ray tomographic technique. After the dogs were anesthetized a catheter was advanced to the right ventricular outlfow tract and 2 mL/kg Renovist contrast agent injected rapidly. During the subsequent pulmonary arterial phase of the angiogram the dogs were scanned. Three-dimensional geometry of the pulmonary arterial tree was measured in terms of vessel segment cross-sectional area, branching angles and interbranch segment lengths along axial pathways. The effect of lung inflation and phase of the cardiac cycle on geometry was shown to be most marked on vessel cross-sectional area. The geometric branching patterns in all dogs were similar. The observed, in-vivo branching pattern behaved somewhat like the branching pattern predicted from optimized models proposed by Murray [4, 5], Zamir [10, 11] and Uylings [7].

1980 ◽  
Vol 48 (3) ◽  
pp. 450-467 ◽  
Author(s):  
J. C. Smith ◽  
W. Mitzner

The pressure-volume behavior of intraparenchymal extra-alveolar arteries and veins was measured at various lung inflation states by inflating and deflating the vasculatures with air. The vascular volumes at specific vascular pressures (Pv) and transpulmonary pressures (Ptp) were partitioned into components of axial length and cross-sectional area. An analysis of the interrelationships between the perivascular pressure (Px), the vascular pressure vs. cross-sectional area behavior, and the Ptp is presented. For in vivo values of Pv, at functional residual capacity, the vascular-parenchymal mechanical interaction was small and values of arterial and venous Px approximately Ppl. With increasing Ptp to 30 cmH2O, values of both the arterial and venous Px relative to Ppl (Px - Ppl) decreased to approximately -5 cmH2O, indicating that the magnitude of the vascular-parenchymal interaction with increasing Ptp is similar for both arteries and veins in the in vivo state. At any fixed Ptp, values of arterial and venous Px - Ppl decreased nearly linearly with decreasing vascular cross-sectional area. These results were generally consistent with a linear continuum elasticity solution relating stress and deformation in the perivascular parenchyma.


2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Nobuto Nakanishi ◽  
Shigeaki Inoue ◽  
Rie Tsutsumi ◽  
Yusuke Akimoto ◽  
Yuko Ono ◽  
...  

Ultrasound has become widely used as a means to measure the rectus femoris muscle in the acute and chronic phases of critical illness. Despite its noninvasiveness and accessibility, its accuracy highly depends on the skills of the technician. However, few ultrasound phantoms for the confirmation of its accuracy or to improve technical skills exist. In this study, the authors created a novel phantom model and used it for investigating the accuracy of measurements and for training. Study 1 investigated how various conditions affect ultrasound measurements such as thickness, cross-sectional area, and echogenicity. Study 2 investigated if the phantom can be used for the training of various health care providers in vitro and in vivo. Study 1 showed that thickness, cross-sectional area, and echogenicity were affected by probe compression strength, probe angle, phantom compression, and varying equipment. Study 2 in vitro showed that using the phantom for training improved the accuracy of the measurements taken within the phantom, and Study 2 in vivo showed the phantom training had a short-term effect on improving the measurement accuracy in a human volunteer. The new ultrasound phantom model revealed that various conditions affected ultrasound measurements, and phantom training improved the measurement accuracy.


2010 ◽  
Vol 42 (6) ◽  
pp. 965-976 ◽  
Author(s):  
Yo-Cheon Ku ◽  
Joo-Hyun Rho ◽  
Su-Hwan Yun ◽  
Min-Ho Kwak ◽  
Kyu-Hong Kim ◽  
...  

2004 ◽  
Vol 96 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Eric Laffon ◽  
Christophe Vallet ◽  
Virginie Bernard ◽  
Michel Montaudon ◽  
Dominique Ducassou ◽  
...  

The present method enables the noninvasive assessment of mean pulmonary arterial pressure from magnetic resonance phase mapping by computing both physical and biophysical parameters. The physical parameters include the mean blood flow velocity over the cross-sectional area of the main pulmonary artery (MPA) at the systolic peak and the maximal systolic MPA cross-sectional area value, whereas the biophysical parameters are related to each patient, such as height, weight, and heart rate. These parameters have been measured in a series of 31 patients undergoing right-side heart catheterization, and the computed mean pulmonary arterial pressure value (PpaComp) has been compared with the mean pressure value obtained from catheterization (PpaCat) in each patient. A significant correlation was found that did not differ from the identity line PpaComp = PpaCat ( r = 0.92). The mean and maximal absolute differences between PpaComp and PpaCat were 5.4 and 11.9 mmHg, respectively. The method was also applied to compute the MPA systolic and diastolic pressures in the same patient series. We conclude that this computed method, which combines physical (whoever the patient) and biophysical parameters (related to each patient), improves the accuracy of MRI to noninvasively estimate pulmonary arterial pressures.


2002 ◽  
Vol 282 (5) ◽  
pp. H1697-H1702 ◽  
Author(s):  
Hui Di Wang ◽  
Douglas G. Johns ◽  
Shanqin Xu ◽  
Richard A. Cohen

Our purpose was to address the role of NAPDH oxidase-derived superoxide anion in the vascular response to ANG II. Blood pressure, aortic superoxide anion, 3-nitrotyrosine, and medial cross-sectional area were compared in wild-type mice and in mice that overexpress human superoxide dismutase (hSOD). The pressor response to ANG II was significantly less in hSOD mice. Superoxide anion levels were increased twofold in ANG II-treated wild-type mice but not in hSOD mice. 3-Nitrotyrosine increased in aortic endothelium and adventitia in wild-type but not hSOD mice. In contrast, aortic medial cross-sectional area increased 50% with ANG II in hSOD mice, comparable to wild-type mice. The lower pressor response to ANG II in the mice expressing hSOD is consistent with a pressor role of superoxide anion in wild-type mice, most likely because it reacts with nitric oxide. Despite preventing the increase in superoxide anion and 3-nitrotyrosine, the aortic hypertrophic response to ANG II in vivo was unaffected by hSOD.


1984 ◽  
Vol 57 (5) ◽  
pp. 1399-1403 ◽  
Author(s):  
J. D. MacDougall ◽  
D. G. Sale ◽  
S. E. Alway ◽  
J. R. Sutton

Muscle fiber numbers were estimated in vivo in biceps brachii in 5 elite male bodybuilders, 7 intermediate caliber bodybuilders, and 13 age-matched controls. Mean fiber area and collagen volume density were calculated from needle biopsies and muscle cross-sectional area by computerized tomographic scanning. Contralateral measurements in a subsample of seven subjects indicated the method for estimation of fiber numbers to have adequate reliability. There was a wide interindividual range for fiber numbers in biceps (172,085–418,884), but despite large differences in muscle size both bodybuilder groups possessed the same number of muscle fibers as the group of untrained controls. Although there was a high correlation between average cross-sectional fiber area and total muscle cross-sectional area within each group, many of the subjects with the largest muscles also tended to have a large number of fibers. Since there were equally well-trained subjects with fewer than normal fiber numbers, we interpret this finding to be due to genetic endowment rather than to training-induced hyperplasia. The proportion of muscle comprised of connective and other noncontractile tissue was the same for all subjects (approximately 13%), thus indicating greater absolute amounts of connective tissue in the trained subjects. We conclude that in humans, heavy resistance training directed toward achieving maximum size in skeletal muscle does not result in an increase in fiber numbers.


1999 ◽  
Vol 86 (2) ◽  
pp. 701-708 ◽  
Author(s):  
Claudius Gückel ◽  
Athol U. Wells ◽  
David A. Taylor ◽  
François Chabat ◽  
David M. Hansell

The purpose of this study was to investigate whether hypoxic pulmonary vasoconstriction is the major determinant of the computed tomography (CT) pattern of mosaic attenuation in asthmatic patients with induced bronchoconstriction. Thin-section CT was performed at suspended full inspiration immediately and 30 min after methacholine bronchoprovocation in 22 asthmatic subjects, who were randomly assigned to breathe room air ( group A, n = 8), oxygen via nasal prongs at 5 l/min ( group B, n = 8), and oxygen via face mask at 12 l/min ( group C, n = 6). CT changes were quantified in terms of global lung density and density in hypodense and hyperdense areas. Lung parenchymal density increases were greatest in group C and greater in group B than in group A, globally ( P = 0.03) and in hypodense regions ( P = 0.01). On bivariate analysis, the only change in cross-sectional area was related to change in global density. In hypodense regions, density change was related both to reduction in cross-sectional area ( P < 0.0005) and to oxygen administration ( P = 0.01). After correction for changes in global lung density, only oxygen was independently related to density increase in hypodense areas ( P = 0.02). In induced bronchoconstriction, the CT appearance of mosaic attenuation can be largely ascribed to hypoxic vasoconstriction rather than to changes in lung inflation.


Sign in / Sign up

Export Citation Format

Share Document