Utilization of Control Effort Constraints in Linear Controller Design

1989 ◽  
Vol 111 (3) ◽  
pp. 378-381 ◽  
Author(s):  
A. Galip Ulsoy

A linear controller design procedure, which accounts for constraints on control effort, is developed by requiring that the control system utilize the maximum energy delivering capability of the final control elements under some specified test conditions (e.g., maximum step reference input). Results using this approach are available from previous studies for low-order single-input single-output controlled systems. This paper presents results for multi-input multi-output systems where the number of inputs is equal to the number of states. Both state variable feedback control for regulation, and integral plus state variable feedback control for tracking are considered and illustrated with an example problem.

1988 ◽  
Vol 110 (2) ◽  
pp. 134-142 ◽  
Author(s):  
A. Nassirharand ◽  
J. H. Taylor ◽  
K. N. Reid

A new systematic and algebraic linear control system design procedure for use with highly nonlinear plants is developed. This procedure is based on simultaneous stabilization theory and sinusoidal-input describing function models of the nonlinear plant, and is presently applicable to single-input single-output, time-invariant, deterministic, stable, and continuous-time systems which are representable in standard state-variable differential equation form. Three software utilities to implement the controller design procedure are also outlined. This method and the associated software is applied to a position control problem of the sort encountered in robotics, and the results are compared with those previously obtained using both linear and nonlinear PID control.


2004 ◽  
Vol 10 (1) ◽  
pp. 55-84
Author(s):  
Raffi Derkhorenian ◽  
Nader Jalili ◽  
D M Dawson

In this paper we describe the design and implementation of a nonlinear adaptive disturbance rejection approach for single-input-single-output linear-time-invariant uncertain systems subject to sinusoidal disturbances with unknown amplitude and frequency. This is an extension of our earlier study to a more complicated plant, a two-degrees-of-freedom (2DOF) system representing a vibration absorber setting. The controller design is based on a single Lyapunov function incorporating both the error states and the update laws and, hence, global stability and improved transient performance are readily achieved. Utilizing only the system output, a virtual control input is used in place of non-measurable and unknown signals. The performance of the adaptation algorithm is demonstrated through real-time simulations, both for regulation and tracking, on a 2DOF system representing an active vibration absorber setup. It is shown that when the primary system is subjected to an unknown sinusoidal disturbance, the proposed controller in the absorber subsection completely suppresses the primary system vibration in the presence of unknown disturbance.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Stefania Tronci ◽  
Roberto Baratti

This paper presents a gain-scheduling design technique that relies upon neural models to approximate plant behaviour. The controller design is based on generic model control (GMC) formalisms and linearization of the neural model of the process. As a result, a PI controller action is obtained, where the gain depends on the state of the system and is adapted instantaneously on-line. The algorithm is tested on a nonisothermal continuous stirred tank reactor (CSTR), considering both single-input single-output (SISO) and multi-input multi-output (MIMO) control problems. Simulation results show that the proposed controller provides satisfactory performance during set-point changes and disturbance rejection.


1993 ◽  
Author(s):  
S. Jagannathan ◽  
A. B. Palazzolo ◽  
A. F. Kascak ◽  
G. T. Montague

A novel frequency-domain technique, having its roots in Quantitative Feedback Theory (QFT), has been developed to design controllers for active vibration control (AVC). The advantages are a plant-based design according to performance specifications, and the ability to include structured uncertainties in the critical plant parameters like passive bearing stiffness or damping. In this paper, we describe the background theory of single-input, single-output (SISO) and multi-input, multi-output (MIMO) QFT design, followed by development of the theory adapted for AVC. Application examples are considered next, outlining the design method for both cases. Simulation results for the systems studied are presented showing the effectiveness of the technique in attenuating vibration.


Author(s):  
Kyoungchul Kong ◽  
Masayoshi Tomizuka

A human wearing an exoskeleton-type assistive device results in a parallel control system that includes two controllers: the human brain and a digital exoskeleton controller. Unknown and complicated characteristics of the brain dynamically interact with the exoskeleton controller which makes the controller design challenging. In this paper, the motion control system of a human is regarded as a feedback control loop that consists of a brain, muscles and the dynamics of the extended human body. The brain is modeled as a control algorithm amplified by a fictitious variable gain. The variable gain compensates for characteristic changes in the muscle and dynamics. If a human is physically impaired or subjected to demanding work, the exoskeleton should generate proper assistive forces, which is equivalent to increasing the variable gain. In this paper, a control algorithm that realizes the fictitious variable gain is designed and its performance and robustness are discussed for single-input single-output cases. The control algorithm is then verified by simulation results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
R. Jeyasenthil ◽  
Yang-Sup Lee ◽  
Seung-Bok Choi

In this work, a new integrated fault detection and control (IFDC) method is presented for single-input/single-output systems (SISOs). The idea is centered on comparing the closed-loop output between the faulty system and fault-free one to schedule/switch the feedback control once the fault occurs. The problem addressed in this work is the output disturbance rejection. The set of feedback controllers are designed using quantitative feedback theory (QFT) for fault-free and faulty systems. In the context of QFT-based IFDC, the proposed active approach is novel, simple, and easy to implement from an engineering point of view. The efficiency of the proposed method is assessed on a flexible smart structure system featuring a piezoelectric actuator. The actuator and sensor faults considered are the multiplicative type with both fixed and time-varying magnitudes. In the fixed magnitude fault case, the actuator/sensor output delivering capability is reduced by 50% (multiplying a factor of 0.5 to its actual output), while in the time-varying magnitude case, it becomes 60% to 50% for a particular time interval. In both cases, the proposed control method identifies the fault and activates the required controller to satisfy the specification with less control effort as opposed to the passive QFT design featured by faulty system design alone.


2009 ◽  
Vol 28 (3) ◽  
pp. 205-215 ◽  
Author(s):  
R. K. Raja Ahmad ◽  
M. O. Tokhi

This paper presents the development of a self-tuning controller design of minimum effort active noise control (ANC) for feedforward single-input single-output (SISO) architecture which includes the feedback acoustic path in the controller formulation. The controller design law is derived for suitable self-tuning implementation and the self-tuning controller is evaluated in a realistically constructed ANC simulation environment. The self-tuning controller design involves a two-stage identification process where the controller is replaced by a switch. This switch is closed and opened in sequence generating two transfer functions which are then used in constructing the controller specified by a minimum effort control law. The implementation requires an estimate of the secondary path transfer function which can be identified either online or offline. The controller design and implementation are evaluated in terms of the level of cancellation at the observer through simulation studies for various values of modified effort weighting parameter in the range 0 ≤ γ ≤ 1. It was found that the optimal controller designed using this technique which is constrained only by the accuracy of the two models identified using recursive least squares algorithm, yields good cancellation level.


Ability of the proportional integral (PI) and proportional integral derivative (PID) controllers in set point tracking and disturbance rejection has led to their wide usage in industrial applications. The desired controller performance can be achieved by application of suitable tuning rules. The presence of interacting loops in a process makes it a challenging task of PI controllers design in multivariable processes. This problem highly mitigated by employing simple single input single output internal model controller (IMC). This IMC PI controller values are applied for different distillation process involving distillation columns like Wardle and Wood (WW) , Wood and Berry (WB) and Vinate-Luyben (V-L). The obtained simulation with proposed method gives better results and performance indices values compared to other control tuning strategies.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Sudarshan Hegde ◽  
G. K. Ananthasuresh

We present an interactive map-based technique for designing single-input-single-output compliant mechanisms that meet the requirements of practical applications. Our map juxtaposes user-specifications with the attributes of real compliant mechanisms stored in a database so that not only the practical feasibility of the specifications can be discerned quickly but also modifications can be done interactively to the existing compliant mechanisms. The practical utility of the method presented here exceeds that of shape and size optimizations because it accounts for manufacturing considerations, stress limits, and material selection. The premise for the method is the spring-leverage (SL) model, which characterizes the kinematic and elastostatic behavior of compliant mechanisms with only three SL constants. The user-specifications are met interactively using the beam-based 2D models of compliant mechanisms by changing their attributes such as: (i) overall size in two planar orthogonal directions, separately and together, (ii) uniform resizing of the in-plane widths of all the beam elements, (iii) uniform resizing of the out-of-plane thicknesses of the beam elements, and (iv) the material. We present a design software program with a graphical user interface for interactive design. A case-study that describes the design procedure in detail is also presented while additional case-studies are posted on a website.


1999 ◽  
Vol 123 (2) ◽  
pp. 233-236 ◽  
Author(s):  
Qian Wang ◽  
Robert F. Stengel

A method of designing a family of robust compensators for a single-input/single-output linear system is presented. Each compensator’s transfer function is found by using a genetic-algorithm search for numerator and denominator coefficients. The search minimizes the probabilities of unsatisfactory stability and performance subject to real parameter variations of the plant. As the search progresses, probabilities are estimated by Monte Carlo evaluation. The design procedure employs a sweep from the lowest feasible transfer-function order to higher order, terminating either when design goals have been achieved or when no further improvement in robustness is evident. The method provides a means for estimating the best possible compensation of a given order based on repeated searches.


Sign in / Sign up

Export Citation Format

Share Document