Minimum Tracking Error Control of Flexible Ball Screw Drives Using a Discrete-Time Sliding Mode Controller

Author(s):  
Chinedum Okwudire ◽  
Yusuf Altintas

This paper presents modeling, identification, and discrete-time sliding mode control of ball screw drives with structural flexibility. The mechanical system of the drive is modeled by a two degree-of-freedom system dominated by the coupled longitudinal and torsional dynamics of the drive assembly whose parameters are identified. A mode-compensating disturbance adaptive discrete-time sliding mode controller is then designed to actively suppress the vibrations of the drive. However, it is shown theoretically that, without using minimum tracking error filters, the tracking errors of the drive do not go to zero when sliding mode is reached. Therefore, a method for designing stable and robust minimum tracking error filters, irrespective of the identified open-loop behavior of the drive is proposed. The identification and control of flexible ball screw drives are experimentally tested, and the tracking accuracy of the drives is shown to improve considerably as a result of the designed minimum tracking error filters.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Ren ◽  
Zhenghua Liu ◽  
Xiaodong Liu ◽  
Yu Zhang

Aiming at the uncertainties including parameter variations and external disturbances in optoelectronic tracking system, a discrete-time global sliding mode controller (DGSMC) is proposed. By the design of nonlinear switching function, the initial state of control system is set on the switching surface. An adaptive discrete-time reaching law is introduced to suppress the high-frequency chattering at control input, and a linear extrapolation method is employed to estimate the unknown uncertainties and commands. The global reachability for sliding mode and the chattering-free property are proven by means of mathematical derivation. Numerical simulation presents that the proposed DGSMC scheme not only ensures strong robustness against system uncertainties and small tracking error, but also suppresses the high-frequency chattering at control input effectively, compared with the SMC scheme using conventional discrete-time reaching law.


2016 ◽  
Vol 40 (3) ◽  
pp. 701-711 ◽  
Author(s):  
Prasanta Roy ◽  
Arindam Das ◽  
Binoy Krishna Roy

This paper presents a comparative study between a sliding mode controller and a fractional order sliding mode controller applied to the problem of trajectory control of a ball in a ball and plate system. The ball and plate system is a well-known benchmark to test advanced control strategies because of its multivariable nonlinear coupled dynamics, open loop instability, parameter uncertainty, and under actuation. A cascaded sliding mode controller is initially designed to mitigate the problem. Furthermore, to improve the performance, a cascaded fractional order sliding mode controller is proposed. The proposed control strategies are experimentally validated on a ball and plate laboratory setup (Feedback Instruments Model No. 033-240). Simulation and experimental studies reveal that the fractional order sliding mode controller outperforms the sliding mode controller in terms of tracking accuracy, speed of response, chattering effect, and energy efficiency.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


1989 ◽  
Vol 111 (3) ◽  
pp. 409-415 ◽  
Author(s):  
R. M. DeSantis

A classical PI speed drive controller modified with the parallel addition of an on-off switching element appears to offer a potential for reasonable improvement over the performance of the original version. This improvement is obtained by combining classical transfer function techniques, sliding mode systems ideas, and self-tuning. While theoretical results, extended simulations, and preliminary experimental tests are encouraging, they do suggest that in actual industrial applications performance improvement may be conditioned by the usage of better performing open loop components.


2000 ◽  
Author(s):  
J. Choi ◽  
C. W. de Silva ◽  
V. J. Modi ◽  
A. K. Misra

Abstract This paper focuses a robust and knowledge-based control approach for multi-link robot manipulator systems. Based on the concepts of sliding-mode control and fuzzy logic control (FLC), a fuzzy sliding-mode controller has been developed in previous work. This controller possesses good robustness properties of sliding-mode control and the flexibility and ‘intelligent’ capabilities of knowledge-based control through the use of fuzzy logic. This paper presents experimental studies with fuzzy sliding-mode control as well as conventional sliding-mode control. The results show that the tracking error is guaranteed to converge to a specification in the presence of uncertainties. The performance of the fuzzy sliding-mode controller is found to be somewhat better than that of the conventional sliding-mode controller.


Sign in / Sign up

Export Citation Format

Share Document