Natural Frequencies of Out-of-Plane Vibration of Arcs

1982 ◽  
Vol 49 (4) ◽  
pp. 910-913 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
K. Tanaka

The natural frequencies of out-of-plane vibration based on the Timoshenko beam theory are calculated numerically for uniform arcs of circular cross section under all combination of boundary conditions, and the results are presented in some figures.

1983 ◽  
Vol 50 (2) ◽  
pp. 449-452 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
K. Tanaka

The natural frequencies of in-plane vibration are presented for uniform arcs with circular cross section under all combinations of boundary conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110609
Author(s):  
Hossein Talebi Rostami ◽  
Maryam Fallah Najafabadi ◽  
Davood Domiri Ganji

This study analyzed a Timoshenko beam with Koch snowflake cross-section in different boundary conditions and for variable properties. The equation of motion was solved by the finite element method and verified by Solidworks simulation in a way that the maximum error was about 2.9% for natural frequencies. Displacement and natural frequency for each case presented and compared to other cases. Significant research achievements illustrate that if we change the Koch snowflake cross-section of the beam from the first iteration to the second, the area and moment of inertia will increase, and we have a 5.2% rise in the first natural frequency. Similarly, by changing the cross-section from the second iteration to the third, a 10.2% growth is observed. Also, the hollow cross-section is considered, which can enlarge the natural frequency by about 26.37% compared to a solid one. Moreover, all the clamped-clamped, hinged-hinged, clamped-free, and free-free boundary conditions have the highest natural frequency for the Timoshenko beam with the third iteration of the Koch snowflake cross-section in solid mode. Finally, examining important physical parameters demonstrates that variable density from a minimum value to the standard value along the beam increases the natural frequencies, while variable elastic modulus decreases it.


2020 ◽  
Vol 10 (15) ◽  
pp. 5245
Author(s):  
Chunfeng Wan ◽  
Huachen Jiang ◽  
Liyu Xie ◽  
Caiqian Yang ◽  
Youliang Ding ◽  
...  

Based on the classical Timoshenko beam theory, the rotary inertia caused by shear deformation is further considered and then the equation of motion of the Timoshenko beam theory is modified. The dynamic characteristics of this new model, named the modified Timoshenko beam, have been discussed, and the distortion of natural frequencies of Timoshenko beam is improved, especially at high-frequency bands. The effects of different cross-sectional types on natural frequencies of the modified Timoshenko beam are studied, and corresponding simulations have been conducted. The results demonstrate that the modified Timoshenko beam can successfully be applied to all beams of three given cross sections, i.e., rectangular, rectangular hollow, and circular cross sections, subjected to different boundary conditions. The consequence verifies the validity and necessity of the modification.


2003 ◽  
Vol 70 (1) ◽  
pp. 154-157 ◽  
Author(s):  
M. B. Rubin

Classical Timoshenko beam theory includes a shear correction factor κ which is often used to match natural vibrational frequencies of the beam. In this note, a number of static and dynamic examples are considered which provide a theoretical basis for specifying κ=1. Within the context of Cosserat theory, natural frequencies of the beam can be matched by appropriate specification of the director inertia coefficients with κ=1.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Ismail Kucuk ◽  
Ibrahim S. Sadek ◽  
Sarp Adali

Variational principles are derived for multiwalled carbon nanotubes undergoing linear vibrations using the semi-inverse method with the governing equations based on nonlocal Timoshenko beam theory which takes small scale effects and shear deformation into account. Physical models based on the nonlocal theory approximate the nanoscale phenomenon more accurately than the local theories by taking small scale phenomenon into account. Variational formulation is used to derive the natural and geometric boundary conditions which give a set of coupled boundary conditions in the case of free boundaries which become uncoupled in the case of the local theory. Hamilton's principle applicable to this case is also given.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
S. H. Mirtalaie ◽  
M. A. Hajabasi

The linear lateral free vibration analysis of the rotor is performed based on a new insight on the Timoshenko beam theory. Rotary inertia, gyroscopic effects, and shear deformations are included, but the torsion is neglected and a new dynamic model is presented. It is shown that if the total rotation angle of the beam cross section is considered as one of the degrees-of-freedom of the Timoshenko rotor, as is common in the literature, some terms are missing in the modeling of the global dynamics of the system. The total deflection of the beam cross section is divided into two steps, first the Euler angles relations are employed to establish the curved geometry of the beam due to the elastic deformation of the beam centerline and then the shear deformations was superposed on it. As a result of this methodology and the mutual interaction of shear and Euler angles some variable coefficient terms appeared in the kinetic energy of the system which makes the problem be classified as the parametrically excited systems. A linear coupled variable coefficient system of differential equations is derived while the variable coefficient terms have been missing in all previous studies in the literature. The free vibration behavior of parametrically excited system is investigated by perturbation method and compared with the common Rayleigh, Timoshenko, and higher-order shear deformable spinning beam models in the rotordynamics. The effects of rotating speed and slenderness ratio are studied on the forward and backward natural frequencies and the critical speeds of the system are examined. The study demonstrates that the shear and Euler angles interaction affects the high-frequency free vibrations behavior of the spinning beam especially for higher slenderness ratio and rotating speeds of the rotor.


Sign in / Sign up

Export Citation Format

Share Document