The Tearing of Plain Woven Fabrics Made From Ring, Open End, Twistless and Twisted Bonded Yarns

1980 ◽  
Vol 102 (4) ◽  
pp. 352-359 ◽  
Author(s):  
P. R. Lord ◽  
W. C. Stuckey

The theory relating to the tearing of a plain woven fabric is developed to include the dynamic effects in the damped mass-elastic system. Experimentation with a variety of staple yarns shows that the mass elastic response has a significant effect on the behavior of the fabric undergoing tear. In particular, the intermittent slippage of the yarns from the body of the fabric into the del zone is of great importance. The greater the number of unbroken yarns in the del zone, the greater is the tear strength for a given yarn.

2016 ◽  
Vol 87 (3) ◽  
pp. 381-386 ◽  
Author(s):  
D Yang ◽  
X Chen

Angle-interlock woven fabric offers an option for making female body armor as it can form integrally the required dome shapes because of its extraordinary moldability and satisfactory ballistic performance. A mathematical model is created to determine the pattern geometry for the front panel of female body armor, and the front panel can be quickly created using this mathematical model. However, the body armor is multi-layer, which indicates that the relationship between the thickness of the fabric and the pattern block projection for different layers of fabric needs to be investigated, in order to create the whole panel, to improve this novel approach for making seamless female body armor with satisfactory ballistic performance.


2015 ◽  
Vol 15 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Selin Hanife Eryuruk ◽  
Fatma Kalaoğlu

Abstract The tear strength of a woven fabric is very important, since it is more closely related to serviceability of the fabric. Tearing strength of the fabrics depend on the mobility of the yarn within the fabric structure. In this study, the tearing strength of four types of fabrics warp rib, weft rib, ripstop and plain weave were analysed, which were produced in different densities and with filament and texturised polyester yarns.


2011 ◽  
Vol 181-182 ◽  
pp. 355-360 ◽  
Author(s):  
Ping Wang

Woven fabrics are widely used in industry. In this paper, mechanical behaviors such as tear strength and stab strength of four kinds of woven fabric with different structural parameters were tested on Material Test System (MTS810.23). The tests were all conducted on both warp and weft directions. The failure morphologies of each woven fabric were observed to unveil the corresponding failure mechanisms.


2019 ◽  
Vol 14 ◽  
pp. 155892501986096
Author(s):  
Željko Šomođi ◽  
Emilija Zdraveva ◽  
Snježana Brnada

Unlike many other engineering materials, deformational behaviour of fabrics is marked by specific nonlinearities. For the purpose of certain engineering analyses, nonlinearity can be approximately described by means of appropriate models. A number of possibilities in approximation of tensile nonlinearity are statistically analysed and compared for the representative selection of woven fabrics. Second-order parabolic approximation is estimated to combine simplicity and good accuracy for a selected woven fabric. It is then included into deformational analysis of specimen in asymmetric tensile loading, as the case representative for structural application of textile, where geometric conditions combined with material properties define the mechanical behaviour of the body. The results indicate the factors of stress concentration due to load eccentricity. Simulation of tensile test gives the theoretical prediction of apparent reduction in stiffness and strength of the specimen in terms of the load eccentricity.


2019 ◽  
Vol 27 (3(135)) ◽  
pp. 43-50
Author(s):  
Małgorzata Matusiak

Moisture management is defined as the controlled movement of water vapour and liquid water (perspiration) from the surface of the skin to the atmosphere through the fabric. The ability of moisture transport is a very important feature of textile materials from the point of view of the physiological comfort of usage clothing made of these materials. Among the different textile materials (woven, knitted and nonwoven), seersucker woven fabric is considered as having good comfort-related properties. The fabrics are characterised by the occurrence of puckered and flat strips in the warp direction. The puckered effect generates air spaces between the body and the fabric, keeping the wearer cool in hot conditions as the puckered area holds the fabric away from the skin during usage. In the work presented, seersucker woven fabrics of different patterns of the puckered strips were investigated. The aim of the work was to analyse the relationship between the structure of seersucker fabrics and their moisture management properties. Measurement of the moisture transport properties of seersucker woven fabrics was made using a Moisture Management Tester M290, produced by SDL Atlas. Investigations performed showed that the properties of seersucker woven fabrics characterising their ability to transfer liquid moisture are different depending on the variant of the repeat of puckered strips.


2018 ◽  
Vol 26 (4(130)) ◽  
pp. 48-51
Author(s):  
Rimvydas Milašius ◽  
Brigita Legaudienė ◽  
Ginta Laureckienė

The influence of weave on woven fabric tear strength is analysed in this paper. Brierlay’s factor Fm, Milašius’ factor P and P’ and modification of parameter P made by the authors (P’weft) were used in the investigations presented. Woven fabrics of 100 % viscose multifilament yarn manufactured from the same yarns and with the same density but with seven different weaves (plain weave, weft rib 2/2, warp rib 2/2, twill 2/2, twill 3/1, basket weave 2/2 and 4 healds sateen) were used for the investigations. It was stated that the well-known weave parameters of Brierley Fm and Milašius P and P’ cannot be used for the prediction of the tear strength of all kinds of weaves without any limitations. All parameters presented can be used for the strength prediction of a weave when they are divided into two groups – a rib-based group and twill-based group. Prediction of the tear strength for rib-based weaves in the weft has to be carried out using parameter P’weft, where the influence of parameters P1 and P is varied.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3849
Author(s):  
Martin Svoboda ◽  
Milan Chalupa ◽  
Karel Jelen ◽  
František Lopot ◽  
Petr Kubový ◽  
...  

The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement’s main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle’s axles and the structure of the driver’s and front passenger’s seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment’s results is the basis for determining the future direction of the research.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1188
Author(s):  
Klara Kostajnšek ◽  
Krste Dimitrovski

The paper presents an extension of existed cover factor theory more suitable for the evaluation of light penetration through a net woven fabrics structure. It also introduces a new simplified model of predicting the ultraviolet (UV) protective properties of woven fabrics assuming that the coefficient of reflection (KR), transmission (KT), and absorption (KA) of constitutive yarns are known. Since usually they are not, the procedure of preparation of simulation of proper woven fabric samples without interlacing and with known constructional parameters is also presented. The procedure finishes with a fast and cheap detection of missed coefficient for any type of yarns. There are differences between theoretical and measured results, which are not particularly significant in regard to the purpose and demands of investigation.


2003 ◽  
Vol 11 (6) ◽  
pp. 465-476 ◽  
Author(s):  
Y. S. Song ◽  
K. Chung ◽  
T. J. Kang ◽  
J. R. Youn

The complete prediction of the second order permeability tensor for a three dimensional multi-axial preform is critical if we are to model and design the manufacturing process for composites by considering resin flow through a multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for a woven fabric were predicted numerically by the coupled flow model, which combines microscopic and macroscopic flows. The microscopic and macroscopic flows were calculated by using 3-D CVFEM(control volume finite element method) for micro and macro unit cells. To avoid a checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytical solutions. The permeability of a plain woven fabric was measured by means of an unidirectional flow experiment and compared with the permeability calculated numerically. Reverse and simple stacking of plain woven fabrics were taken into account and the relationship between the permeability and the structures of the preform such as the fiber volume fraction and stacking order is identified. Unlike other studies, the current study was based on a more realistic three dimensional unit cell. It was observed that in-plane flow is more dominant than transverse flow within the woven perform, and the effect of the stacking order of a multi-layered preform was negligible.


2008 ◽  
Vol 55-57 ◽  
pp. 413-416 ◽  
Author(s):  
C.I. Huang ◽  
C.I. Su ◽  
Ching Wen Lou ◽  
Wen Hao Hsing ◽  
Jia Horng Lin

Recently, development of technology increases human life quality and gradually raises the value of health protection in human’s concept. Bamboo has multi-functional including far infrared radiation, deodorization and anion generation. Therefore, bamboo charcoal has been widely used in textile industry. Moreover, development of technology also increased the electromagnetic hazard in human’s daily life. This study aims to develop a manufacturing process of functional composite yarn-dyed woven fabrics. In the manufacturing process, the materials included pure cotton yarn, stainless steel fiber(called metallic yarn) and viscose rayon yarn containing bamboo charcoal (called bamboo charcoal yarn) were used for making the bamboo charcoal/stainless steel composite woven fabric. The composite woven fabrics were woven by using same warp yarn and two kinds of weft yarn that contained bamboo charcoal and stainless steel. The composite fabrics had two different structures. Those fabrics were changed the order of bamboo charcoal yarn and metallic yarn. The ratios of weft yarn were 1 end of bamboo charcoal yarn to 1 end of metallic yarn and 3 ends of bamboo charcoal yarn to 1 end of metallic yarn. Furthermore, the fabrication of composite fabrics that included plain, 2/2 twill and dobby were changed. The composite woven fabrics were finished and laminated by TPU film to enhance the waterproof and vapor permeable functions. The laminated composite fabrics were evaluated by far-infrared coefficient, anion generation rate, water vapor permeability, water resistance, surface electric resistance and electromagnetic shelter property to obtained optimal manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document