A Study of the Viscous and Nonadiabatic Flow in Radial Turbines

1981 ◽  
Vol 103 (3) ◽  
pp. 481-489
Author(s):  
I. Khalil ◽  
W. Tabakoff

A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

Author(s):  
B. V. R. Vittal ◽  
W. Tabakoff

The presence of solid particles in turbomachinery flow affects the component performance as well as its life. The subject of particulated flows can be broadly divided into three parts, namely, particle trajectories, the effect of particles on the aerodynamics of flow and material erosion. The first two aspects are investigated in this paper taking into account the viscosity of the carrier fluid. The Lagrangian formulation is adopted for the particles, whereas the Eulerian approach is used for the continuous phase. The effect of particles is incorporated as interphase force terms in the fully incompressible stream function-vorticity form of the Navier-Stokes equations. The field analysis is based on the numerical integration of this equation over the rotor blade to blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. The trajectories of the solid particles are determined including particle impacts with the blades. The particle rebounding velocity and direction after each impact is determined using semi-empirical correlations for the restitution ratios obtained experimentally. The method of analysis is applied to a radial inflow turbine. The effect of particles on the aerodynamics of the flow is studied by analyzing the fluid streamline pattern in the rotor blades with and without solid particles. The analysis is carried out for various particle concentrations.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


It is shown that the boundary layer approximation to the flow of a viscous fluid past a flat plate of length l , generally valid near the plate when the Reynolds number Re is large, fails within a distance O( lRe -3/4 ) of the trailing edge. The appropriate governing equations in this neighbourhood are the full Navier- Stokes equations. On the basis of Imai (1966) these equations are linearized with respect to a uniform shear and are then completely solved by means of a Wiener-Hopf integral equation. The solution so obtained joins smoothly on to that of the boundary layer for a flat plate upstream of the trailing edge and for a wake downstream of the trailing edge. The contribution to the drag coefficient is found to be O ( Re -3/4 ) and the multiplicative constant is explicitly worked out for the linearized equations.


Author(s):  
Manabu Okura ◽  
Kiyoaki Ono

In order to keep the environment in an air-conditioned room comfortable, it is important to anticipate the air velocity and temperature fields precisely. The numerical code, solving simultaneously the Navier-Stokes equations governing flow field inside and outside the room and the heat conduction equation applying to walls, are developed. The assumption that the heat transfer coefficient between the fluid and the surface of solids is not used. This code is applied to investigate the cooling process of a cubic shell. The computational results agree with the experimental results. We also investigated the same process of the cubic shells whose walls are internally or externally insulated. The difference of the amount of heat transfer will be discussed.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Filipe S. Pereira ◽  
Luís Eça ◽  
Guilherme Vaz

The importance of the turbulence closure to the modeling accuracy of the partially-averaged Navier–Stokes equations (PANS) is investigated in prediction of the flow around a circular cylinder at Reynolds number of 3900. A series of PANS calculations at various degrees of physical resolution is conducted using three Reynolds-averaged Navier–Stokes equations (RANS)-based closures: the standard, shear-stress transport (SST), and turbulent/nonturbulent (TNT) k–ω models. The latter is proposed in this work. The results illustrate the dependence of PANS on the closure. At coarse physical resolutions, a narrower range of scales is resolved so that the influence of the closure on the simulations accuracy increases significantly. Among all closures, PANS–TNT achieves the lowest comparison errors. The reduced sensitivity of this closure to freestream turbulence quantities and the absence of auxiliary functions from its governing equations are certainly contributing to this result. It is demonstrated that the use of partial turbulence quantities in such auxiliary functions calibrated for total turbulent (RANS) quantities affects their behavior. On the other hand, the successive increase of physical resolution reduces the relevance of the closure, causing the convergence of the three models toward the same solution. This outcome is achieved once the physical resolution and closure guarantee the precise replication of the spatial development of the key coherent structures of the flow.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 580 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

Micromixers are significant segments inside miniaturized scale biomedical frameworks. Numerical investigation of the effects of galloping cylinder characteristics inside a microchannel Newtonian, incompressible fluid in nonstationary condition is performed. Governing equations of the system include the continuity equation, and Navier–Stokes equations are solved within a moving mesh domain. The symmetry of laminar entering the channel is broken by the self-sustained motion of the cylinder. A parameter study on the amplitude and frequency of passive moving cylinder on the mixing of tiny particles in the fluid is performed. The results show a significant increase to the index of mixing uses of the galloping body in biomedical frameworks in the course of micro-electromechanical systems (MEMS) devices.


1989 ◽  
Vol 56 (1) ◽  
pp. 47-50 ◽  
Author(s):  
C. Y. Wang

Melting of a disk is facilitated by rotation. The problem is governed by a nondimensional parameter α which represents the relative importance of injection (melt) rate and rotation times viscosity. The nonlinear governing equations are solved by perturbations for small α and numerical integration for arbitrary α. Torque and heat transfer rates are found. The solution is one of the rare exact similarity solutions of the Navier-Stokes equations.


Sign in / Sign up

Export Citation Format

Share Document