Tip Clearance Flow in a Compressor Rotor Passage at Design and Off-Design Conditions

1984 ◽  
Vol 106 (3) ◽  
pp. 570-577 ◽  
Author(s):  
B. Lakshminarayana ◽  
A. Pandya

The flow field in the tip clearance region of a compressor rotor at an off-design condition is reported in this paper. The earlier data at the design condition have also been reinterpreted and correlated with the blade and the flow parameters. The measurements inside the rotor tip region are acquired using a miniature hot-wire sensor of “V” configuration. The instantaneous velocity data are analyzed by the ensemble-averaging technique to derive the blade-to-blade velocity field at various axial and radial locations between the rotor tip and the casing. The flow and the blade pressure data at the design condition are compared with the data at the off-design condition (lower blade loading). In addition to a reduction in the leakage velocities, its chordwise variation is also altered substantially at the lower blade loading.

1983 ◽  
Vol 105 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A. Pandya ◽  
B. Lakshminarayana

This paper reports on an experimental study of the nature of the tip clearance flow in a moderately loaded compressor rotor. The measurements reported were obtained using a stationary two-sensor, hot-wire probe in combination with an ensemble averaging technique. The flow field was surveyed at various radial locations and at ten axial locations, four of which were inside the blade passage in the clearance region and the remaining six outside the passage. Variations of the mean flow properties in the tangential and the radial directions at various axial locations were derived from the data. Variation of leakage velocity at different axial stations and the annulus-wall boundary layer profiles from passage-averaged mean velocities were also estimated. The results indicate that there exists a region of strong interaction of the leakage flow with the annulus-wall boundary layer at half-chord. The profiles are well-behaved beyond this point. The rotor exit flow is found to be uniform beyond 3/4 blade chord downstream of the rotor trailing edge.


Author(s):  
Marcus Lejon ◽  
Tomas Grönstedt ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

Delaying breakdown of the flow in the tip region of a tip-critical compressor rotor as long as possible, i.e. improving the surge margin, is of great interest to the turbomachinery community and is the focus of this study. The surge margin of ten compressor rotors is evaluated numerically, each with different blade loading and geometry at the tip. Previous work in the field has shown the dependence of an interface in the tip region of a compressor rotor between the incoming flow and the tip clearance flow with the passage flow coefficient ϕ. Previous work in the field has also shown that a higher incoming meridional momentum in the tip region can be beneficial to the surge margin of a tip-critical rotor. The present study generalizes these findings by taking into account the local blade loading of the rotor tip section and the level of loss in the tip region. The surge margin is found to improve if the blade loading of the rotor tip section is increased, which acts to increase the incoming mass flow rate and improve the surge margin provided that an increase in loss, mainly related to the strength and direction of the tip clearance flow, does not negate the effect as the compressor is throttled. Two quantities are proposed as objective functions to be used for optimization to achieve a compressor rotor with high surge margin based on the flow field at the design point. Finally, an optimization and analysis of the results is made to demonstrate the proposed objective functions in practise.


1983 ◽  
Vol 105 (1) ◽  
pp. 13-17 ◽  
Author(s):  
A. Pandya ◽  
B. Lakshminarayana

The flow in the tip clearance region of a compressor rotor is highly turbulent due to the strong interaction of the leakage flow with the annulus wall boundary layer. This paper deals with the turbulence properties of the flow in the tip clearance region of a moderately loaded compressor rotor. The experimental results reported in this paper were obtained using a two-sensor hot-wire probe in combination with an ensemble averaging technique. Blade-to-blade distribution of the axial and tangential turbulence intensities at various radial locations and ten axial locations (four inside the blade passage and the remaining six outside the passage) were derived from this data. Isointensity contours in the clearance region at various radial locations were also obtained from the experimental data. A region of very high turbulence intensities was indicated at the half-chord location from these results. The turbulence intensity profiles also indicated that the leakage flow travels toward the midpassage before rolling up. The turbulence is almost isotropic beyond three-quarter chord downstream of the trailing edge.


Author(s):  
Wei Zhu ◽  
Songtao Wang ◽  
Longxin Zhang ◽  
Jun Ding ◽  
Zhongqi Wang

This study aimed to enhance the understanding of flow phenomena in low-reaction aspirated compressors. Three-dimensional, multi-passage steady and unsteady numerical simulations are performed to investigate the performance sensitivity to tip clearance variation on the first-stage rotor of a multistage low-reaction aspirated compressor. Three kinds of tip clearance sizes including 1.0τ, 2.0τ and 3.0τ are modeled, in which 1.0τ corresponds to the designed tip clearance size of 0.2 mm. The steady numerical simulations show that the overall performance of the rotor moves toward lower mass flow rate when the tip clearance size is increased. Moreover, energy losses, efficiency reduction and stall margin decrease are also observed with increasing tip clearance size. This can be mostly attributed to the damaging impact of intense tip clearance flow. For unsteady simulation, the result shows periodical oscillation of the tip leakage vortex and a “two-passage periodic structure” in the tip region at the near-stall point. The occurrence of the periodical oscillation is due to the severe interaction between the tip clearance flow and the shock wave. However, the rotor operating state is still stable at this working point because a dynamic balance is established between the tip clearance flow and incoming flow.


Author(s):  
R. Dambach ◽  
H. P. Hodson ◽  
I. Huntsman

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualisation and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


2007 ◽  
Vol 16 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Shaojuan Geng ◽  
Hongwu Zhang ◽  
Jingyi Chen ◽  
Weiguang Huang

Author(s):  
Kazutoyo Yamada ◽  
Yusuke Tamagawa ◽  
Hisataka Fukushima ◽  
Masato Furukawa ◽  
Seiichi Ibaraki ◽  
...  

Two types of transonic centrifugal compressor impeller with splitter blades, which are different in blade count, have been investigated in this study. RANS (Reynolds-Averaged Navier-Stokes) simulations were carried out for several operating conditions to clarify differences in aerodynamic performance characteristic and tip clearance flow field between the two compressors. The simulation shows that basically similar flow events happen in both compressors. A low velocity region is generated near the tip at low flow rate conditions, which results from an expansion of the tip leakage vortex. The low velocity region expands as the flow rate is decreased, and interacts with the pressure surface of the splitter blade near the leading edge. This causes a descent of the blade loading near the tip of the leading edge, and an accumulation of high entropy fluid near the casing-suction corner. Moreover, the tip clearance flow spills ahead of the leading edge of the splitter blade at near stall condition, and eventually the spillage happens at the full blade at stall condition. However, the major difference in solidity influences tip clearance flow/blade interaction, which leads to changes in the performance characteristics. In the impeller with low solidity, the tip leakage vortex breaks down with a large blockage effect because of high blade loading at the tip, which decreases the pressure ratio. The impeller with high solidity is subject to the spillage, which results in an early and large-scale stall that decreases the efficiency.


Sign in / Sign up

Export Citation Format

Share Document