An Experimental Study of Local and Mean Heat Transfer in a Triangular-Sectioned Duct Rotating in the Orthogonal Mode

1984 ◽  
Vol 106 (3) ◽  
pp. 661-667 ◽  
Author(s):  
R. J. Clifford ◽  
W. D. Morris ◽  
S. P. Harasgama

This paper presents a selection of experimental results that examines the influence of orthogonal-mode rotation on local and mean heat transfer in a triangular-sectioned duct with potential application to cooled turbine rotor blades. It is shown that Coriolis acceleration can have a beneficial influence on mean heat transfer relative to the nonrotating case at the lower range of turbulent pipe flow Reynolds numbers studied. Also, rotational buoyancy has been shown to have a noticeable effect over this same Reynolds number range in that progressively increasing buoyancy brings about an attendant reduction in heat transfer. As the Reynolds numbers are increased, say, beyond 30,000, buoyancy effects were found to have little influence on mean heat transfer over the speed range covered. Local axial variations in heat transfer along the duct were also measured, and severe reductions in local heat transfer were detected under certain operating circumstances.

1988 ◽  
Vol 110 (1) ◽  
pp. 18-26 ◽  
Author(s):  
J. Moore ◽  
J. S. Tilton

An experimental and analytical study of flow in the tip clearance gap of a linear turbine rotor blade cascade has been performed. Measurements of wall static pressures and flow velocities are used to verify a flow model involving a vena contracta, near the tip gap entrance, followed by flow mixing to fill the gap. A frequently referenced potential flow theory for flow into a tip gap is found to be in error and the correct theory is shown to model the unloading along the pressure surface of the blade and the endwall static pressure distribution up to the vena contracta accurately. A combined potential flow and mixing model accounts for the pressure rise in the tip gap due to mixing. Turbine tip heat transfer is also discussed and a correlation of local heat transfer rates for essentially incompressible flow over unshrouded turbine rotor blades is presented.


Author(s):  
W. D. Morris ◽  
G. Ghavami-Nasr

The influence of rotation on local heat transfer in a rectangular-sectioned duct has been experimentally studied for the case where the ductrotates about an axis orthogonal to its own central axis. The coolant used was air with the flow direction in the radially outwards direction. This rotating flow geometry is encountered in the internal cooling of gas turbine rotor blades.


Author(s):  
Yong W. Kim ◽  
Leonel Arellano ◽  
Mark Vardakas ◽  
Hee-Koo Moon ◽  
Kenneth O. Smith

Modern industrial combustor liners employ various cooling schemes such as, but not limited to, impingement arrays, trip-strips, and film cooling. With an increasing demand for a higher turbine inlet temperatures and lower emissions, there is less air available to cool the combustor liner. To ensure the required liner durability without compromising engine performance more innovative cooling schemes are required. In the present work, three different cooling concepts, i.e., strip-strips, jet array impingement and dimples, operating at unusually high flow conditions were investigated. There is very little data available in the open literature for the aforementioned cooling schemes in the indicated Reynolds Number range (ReDh>60,000). The wall flow friction characteristics as well as the local heat transfer were measured. The heat transfer coefficients were obtained using a transient liquid crystal technique. The test configurations consisted of a 90° trip-strip surface (only one side turbulated), a fixed staggered array with varying impingement hole sizes, and a fixed staggered dimple pattern. For the Reynolds numbers investigated (26,000< ReDh <360,000), the jet-impingement cooling provided the highest average heat transfer enhancement followed by the trip-strip channel, and then by the dimpled channel. In terms of the overall thermal performance, the dimpled channel tends to stand out as the most effective cooling scheme. This is consistent with findings from other investigators at lower Reynolds numbers.


1991 ◽  
Vol 113 (3) ◽  
pp. 339-345 ◽  
Author(s):  
W. D. Morris ◽  
G. Ghavami-Nasr

The influence of rotation on local heat transfer in a rectangular-sectioned duct has been experimentally studied for the case where the duct rotates about an axis orthogonal to its own central axis. The coolant used was air with the flow direction in the radially outward direction. This rotating flow geometry is encountered in the internal cooling of gas turbine rotor blades. Local Nusselt number variations along the duct have been determined over the trailing and leading surfaces. In general terms Coriolis-induced secondary flows are shown to enhance local heat transfer over the trailing surface compared to a stationary duct forced convection situation. The converse is true on the leading surface where significant impediment to local heat transfer can occur. Centripetal buoyancy is shown to influence the heat transfer response with heat transfer being improved on both leading and trailing surfaces as the wall-to-coolant temperature difference is increased with other controlling parameters held constant. Correlating equations are proposed and the results compared with those of other workers in the field.


Author(s):  
W. D. Morris ◽  
S. P. Harasgama ◽  
R. Salemi

This paper presents the results of an experimental investigation of local heat transfer on the trailing and leading surfaces of a square-sectioned duct rotating about an axis orthogonal to its central axis. The flow geometry has application to the cooling of gas turbine rotor blades. It is demonstrated that Coriolis induced secondary flows enhance local heat transfer over the trailing surface in relation to the corresponding non rotating case. Little effect of rotation on the leading surface was detected over the range of experiments covered to date. Rotational buoyancy is shown to have a slight effect only at the lowest Reynolds number tested. The conditions under which buoyancy may be neglected in the real engine range of parameters is still uncertain. Simple correlations for the present data are given as design aids.


1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


1987 ◽  
Vol 109 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J. W. Baughn ◽  
H. Iacovides ◽  
D. C. Jackson ◽  
B. E. Launder

The paper reports extensive connective heat transfer data for turbulent flow of air around a U-bend with a ratio of bend radius:pipe diameter of 3.375:1. Experiments cover Reynolds numbers from 2 × 104 to 1.1 × 105. Measurements of local heat transfer coefficient are made at six stations and at five circumferential positions at each station. At Re = 6 × 104 a detailed mapping of the temperature field within the air is made at the same stations. The experiment duplicates the flow configuration for which Azzola and Humphrey [3] have recently reported laser-Doppler measurements of the mean and turbulent velocity field. The measurements show a strong augmentation of heat transfer coefficient on the outside of the bend and relatively low levels on the inside associated with the combined effects of secondary flow and the amplification/suppression of turbulent mixing by streamline curvature. The peak level of Nu occurs halfway around the bend at which position the heat transfer coefficient on the outside is about three times that on the inside. Another feature of interest is that a strongly nonuniform Nu persists six diameters downstream of the bend even though secondary flow and streamline curvature are negligible there. At the entry to the bend there are signs of partial laminarization on the inside of the bend, an effect that is more pronounced at lower Reynolds numbers.


Author(s):  
Ian M. O. Gorman ◽  
Darina B. Murray ◽  
Gerard Byrne ◽  
Tim Persoons

The research described here is concerned with natural convection from isothermal cylinders, with a particular focus on the interaction between a pair of vertically aligned cylinders. Prime attention was focused on how the local heat transfer characteristics of the upper cylinder are affected due to buoyancy induced fluid flow from the lower cylinder. Tests were performed using internally heated copper cylinders with an outside diameter 30mm and a vertical separation distance between the cylinders ranging from two to three cylinder diameters. Plume interaction between the heated cylinders was investigated within a Rayleigh number range of 2×106 to 6×106. Spectral analysis of the associated heat transfer interaction is presented showing that interaction between the cylinders causes oscillation of the thermal plume. The effect of this oscillation is considered as a possible enhancement mechanism of the heat transfer performance of the upper cylinder.


2000 ◽  
Author(s):  
M. Greiner ◽  
P. F. Fischer ◽  
H. M. Tufo

Abstract Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600 ≤ Re ≤ 1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages.


Sign in / Sign up

Export Citation Format

Share Document