An Investigation of a Highly Loaded Transonic Turbine Stage With Compound Leaned Vanes

1986 ◽  
Vol 108 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Jing Shi ◽  
Jianyuan Han ◽  
Shiying Zhou ◽  
Mingfu Zhu ◽  
Yaoko Zhang ◽  
...  

An investigation was made to compare the performance of a highly loaded transonic turbine stage with and without compound leaned vanes. In both cases, velocity distribution along the vane surfaces was calculated from a full three-dimensional time-marching finite volume method. Nozzles were tested in a wind tunnel. Through rig tests, velocity profile at the stage exit was measured and the stage overall performance obtained. Performance in both tip and hub regions was improved by using the compound leaned vanes so that the stage efficiency increased by approximately 1 percent. The improvement is particularly remarkable at off-design points.

Author(s):  
Shi Jing ◽  
Han Jianyuan ◽  
Zhou Shiying ◽  
Zhu Mingfu ◽  
Zhang Yaoko ◽  
...  

An investigation was made to compare the performance of a highly-loaded transonic turbine stage with and without compound leaned vanes. In both cases, velocity distribution along the vane surfaces was calculated from a full 3 D time-marching finite volume method. Nozzles were tested in a wind tunnel. Through rig test, velocity profile at the stage exit was measured and the stage overall performance obtained. Performance in both tip and hub regions was improved by using the compound leaned vanes so that the stage efficiency increased by 1% approximately. The improvement is payticylarly remarkable at off-design points.


1998 ◽  
Author(s):  
Miroslav Št’astný ◽  
Richard Matas ◽  
Pavel Šafařík ◽  
Alexander R. Jung ◽  
Jürgen F. Mayer ◽  
...  

A study of the flow in a transonic turbine stage with long and strongly twisted rotor blades is presented. The focus is on the flow in the near tip region of the blade-to-blade passage of the rotor. The flow has been modelled experimentally in a transonic wind tunnel and numerically by means of 2D and 3D Navier-Stokes equation solvers. The profiles of the rotor cascades are characterized by law turning angles and a high-velocity exit flow. Detailed flow measurements have been carried out and analysed. A comparison has been made between the experimental and numerical results, and is discussed in detail. The design and test data of the flow through the upper sections of the span are presented. The effects of the tip leakage flow are evaluated and the three-dimensional patterns of the main flow are estimated. Other points of interest are the results of 3D Navier-Stokes analysis of the stage flow as compared to 2D simulations and wind tunnel experiments, together with the question of the limitations of the individual methods as they all use approximations to the actual flow in the turbine stage.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
K. Hiroma ◽  
M. Tsutsumi ◽  
Y. Hirano ◽  
...  

In the present work, unsteady RANS simulations were performed to clarify several interesting features of the unsteady three-dimensional flow field in a turbine stage. The unsteady effect was investigated for two cases of axial spacing between stator and rotor, i.e. large and small axial spacing. Simulation results showed that the stator wake was convected from pressure side to suction side in the rotor. As a result, another secondary flow, which counter-rotated against the passage vortices, was periodically generated by the stator wake passing through the rotor passage. It was found that turbine stage efficiency with the small axial spacing was higher than that with the large axial spacing. This was because the stator wake in the small axial spacing case entered the rotor before mixing and induced the stronger counter-rotating vortices to suppress the passage vortices more effectively, while the wake in the large axial spacing case eventually promoted the growth of the secondary flow near the hub due to the migration of the wake towards the hub.


Author(s):  
Mathias Deckers ◽  
John D. Denton

A theoretical and computational study into the aerodynamics of trailing-edge-cooled transonic turbine blades is described in this part of the paper. The theoretical study shows that, for unstaggered blades with coolant ejection, the base pressure and overall loss can be determined exactly by a simple control volume analysis. This theory suggests that a thick, cooled trailing edge with a wide slot can be more efficient than a thin, solid trailing edge. An existing time-marching finite volume method is adapted to calculate the transonic flow with trailing edge coolant ejection on a structured, quasi-orthogonal mesh. Good overall agreement between the present method, inviscid and viscous, and experimental evidence is obtained.


Author(s):  
P. Giangiacomo ◽  
V. Michelassi ◽  
F. Martelli

A three-dimensional transonic turbine stage is computed by means of a numerical simulation tool. The simulation accounts for the coolant ejection from the stator blade and for the tip leakage of the rotor blade. The stator and rotor rows interact via a mixing plane, which allows the stage to be computed in a steady manner. The analysis is focused on the matching of the stator and rotor mass flow rates. The computations proved that the mixing plane approach allows the stator and rotor mass flow rates to be balanced with a careful choice of the stator-rotor static pressure interface. At the same time, the pitch averaged distribution of the transported quantities at the interface for the stator and rotor may differ slightly, together with the value of the static pressure at the hub.


1987 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
S. H. Moustapha ◽  
U. Okapuu ◽  
R. G. Williamson

This paper describes the performance of a highly loaded single-stage transonic turbine with a pressure ratio of 3.76 and a stage loading factor of 2.47. Tests were carried out with three rotors, covering a range of blade Zweifel coefficient of 0.77 to 1.18. Detailed traversing at rotor inlet and exit allowed an assessment of rotor and stage performance as a function of blade loading under realistic operating conditions. The effect of stator endwall contouring on overall stage performance was also investigated using two different contours with the same vane design.


Author(s):  
S. Girgis ◽  
E. Vlasic ◽  
J.-P. Lavoie ◽  
S. H. Moustapha

This paper presents results of rig testing of a transonic, single stage turbine with various modifications made to the injection of secondary air into the mainstream. Results show that significant improvements in stage efficiency can be realized by optimizing the injection of upstream disk purge and rotor upstream shroud leakage flow into the mainstream flow. Results of CFD simulations of the rotor upstream disk purge flow test conditions and closely simulated test geometry agree well with test data.


Author(s):  
Pieter Groth ◽  
Hans Mårtensson ◽  
Lars-Erik Eriksson

A finite volume method for blade flutter analyses, using moving grids is presented and partly validated. The method which solves the unsteady three-dimensional Euler equations is formulated in the four-dimensional time-space domain. An algebraic grid generation technique based on transfinite interpolation is used to move and deform the grid to conform to the blade motion. Fluxes are calculated using a third-order upwind-biased scheme. For time marching both an explicit three-stage Runge-Kutta scheme and a Crank-Nicolson scheme is used. Internal and external flows are calculated using the present method. Calculated results agree well with the corresponding experiments and with results obtained using other methods.


1993 ◽  
Vol 115 (3) ◽  
pp. 573-581 ◽  
Author(s):  
S. Colantuoni ◽  
A. Colella

The aerodynamic design of a centrifugal compressor for technologically advanced small aeroengines requires more and more the use of sophisticated computational tools in order to meet the goals successfully at minimum cost development. The objective of the present work is the description of the procedure adopted to design a transonic impeller having 1.31 relative Mach number at the inducer tip, 45 deg back-swept exit blade angle, and a tip speed of 636 m/s. The optimization of the blade shape has been done by analyzing the aerodynamic flowfield by extensive use of a quasi-three-dimensional code and a fully three-dimensional Euler solver based on a time-marching approach and a finite volume discretization. Testing has been done on the impeller-only configuration, using a compressor rig that simulates real engine hardware, i.e., having an S-shaped air-intake. The overall performance of the impeller is presented and discussed.


1992 ◽  
Author(s):  
K. R. Kirtley ◽  
T. A. Beach ◽  
Cass Rogo

A numerical simulation of a transonic mixed flow turbine stage has been carried out using an average passage Navier-Stokes analysis. The mixed flow turbine stage considered here consists of a transonic nozzle vane and a highly loaded rotor. The simulation was run at the design pressure ratio and is assessed by comparing results with those of an established throughflow design system. The three-dimensional aerodynamic loads are studied as well as the development and migration of secondary flows and their contribution to the total pressure loss. The numerical results indicate that strong passage vortices develop in the nozzle vane, mix out quickly, and have little impact on the rotor flow. The rotor is highly loaded near the leading edge. Within the rotor passage, strong spanwise flows and other secondary flows exist along with the tip leakage vortex. The rotor exit loss distribution is similar in character to that found in radial inflow turbines. The secondary flows and non-uniform work extraction also tend to significantly redistribute a non-uniform inlet total temperature profile by the exit of the stage.


Sign in / Sign up

Export Citation Format

Share Document