Steam-Injected Gas Turbine Integrated With a Self-Production Demineralized Water Thermal Plant

1988 ◽  
Vol 110 (1) ◽  
pp. 8-16 ◽  
Author(s):  
G. Cerri ◽  
G. Arsuffi

A simple steam-injected gas turbine cycle equipped with an exhaust heat recovery section is analyzed. The heat recovery section consists of a waste heat boiler, which produces the steam to be injected into the combustion chamber, and a self-production demineralized water plant based on a distillation process. This plant supplies the pure water needed in the mixed steam-gas cycle. Desalination plant requirements are investigated and heat consumption for producing distilled water is given. Overall steam-gas turbine cycle performance and feasibility of desalting plants are investigated in a firing temperature range from 1000.°C to 1400.°C for various compressor pressure and steam-to-air injection ratios. An example is reported.

Author(s):  
Giovanni Cerri ◽  
Giacomo Arsuffi

A simple steam injected gas turbine cycle equipped with an exhaust heat recovery section is analyzed. The heat recovery section consists of a waste heat boiler which produces the steam to be injected into the combustion chamber and a self-production demineralized water plant based on a distillation process. This plant supplies the pure water needed in the mixed steam-gas cycle. Desalination plant requirements are investigated and heat consumption for producing distilled water is given. Overall steam-gas turbine cycle performance and feasibility of desalting plants are investigated in a firing temperature range from 1000.°C to 1400.°C for various compressor pressure and steam-to-air injection ratios. An example is reported.


Author(s):  
C. F. McDonald

Increased emphasis is being placed on the regenerative gas turbine cycle, and the utilization of waste heat recovery systems, for improved thermal efficiency. For such systems there are modes of engine operation, where it is possible for a metal fire to occur in the exhaust heat exchanger. This paper is intended as an introduction to the subject, more from an engineering, than metallurgical standpoint, and includes a description of a series of simple tests to acquire an understanding of the problem for a particular application. Some engine operational procedures, and design features, aimed at minimizing the costly and dangerous occurrence of gas turbine heat exchanger fires, are briefly mentioned.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


2019 ◽  
Vol 4 (4) ◽  
pp. 17-23
Author(s):  
Barikuura Gbonee ◽  
Barinyima Nkoi ◽  
John Sodiki

This research presents the performance assessment of a combined heat and power plant operating in the Niger Delta region of Nigeria. The main focus is to evaluate the performance parameters of the gas turbine unit and the waste heat recovery generator section of the combined-heat-and-power plant. Data were gathered from the manufacturer’s manual, field and panel operator’s log sheets and the human machine interface (HMI) monitoring screen. The standard thermodynamic equations were used to determine the appropriate parameters of the various components of the gas turbine power plant as well as that of the heat exchangers of the heat recovery steam generator (HRSG). The outcome of all analysis indicated that for every 10C rise in ambient temperature of the compressor air intake there is an average of 0.146MW drop in the gas turbine power output, a fall of about 0.176% in the thermal efficiency of the plant, a decrease of about 2.46% in the combined-cycle thermal efficiency and an increase of about 0.0323 Kg/Kwh in specific fuel consumption of the plant. In evaluating the performance of the Waste Heat Boiler (WHB), the principle of heat balance above pinch was applied to a single steam pressure HRSG exhaust gas/steam temperature profile versus exhaust heat flow. Hence, the evaporative capacity (steam flow) of the HRSG was computed from the total heat transfer in the super-heaters and evaporator tubes using heat balance above pinch. The analysis revealed that the equivalent evaporation, evaporative capacity (steam flow) and the HRSG thermal efficiency depends on the heat exchanger’s heat load and its effective maintenance.


Author(s):  
Dah Yu Cheng

This paper identifies distinct features of the Cheng Cycle as compared to the steam injected gas turbine, STIG. Development started on the Cheng Cycle in 1974. After eight years of research and testing, the Cheng Cycle was commercialized in 1982. The commercial opportunity came by winning one of the State of California’s Energy Commission sponsored bids at the San Jose State University campus. The first Cheng Cycle power plant was built around the Allison 501KB gas turbine. The project was won on the merit of excellent thermal efficiency with maximum flexibility. It is also the most economical system because it can follow fluctuating electrical and steam loads independently. Financing, licensing and all appropriate permits were completed within one year. It took less than a year to construct and was on line by the end of 1984. Immediately, several distinct features were noticed: (1) the Cheng Cycle boosts power by 70% and efficiency by 40% over the simple cycle, (2) it can follow the electric and steam loads independently, (3) it demonstrated low emission and established 25 ppm NOx as BACT for the San Francisco Bay Area Air Quality District. In 1987, GE introduced their Steam Injected Gas Turbine, STIG, using the LM 2500 and LM 5000, and in the 1990’s GE also introduced the LM1600 version of STIG. The high pressure ratio of those engines resulted in low exhaust temperature. That is not efficient enough to power a steam cycle. Unfortunately, STIG confused some users into thinking that every steam injected gas turbine was a Cheng Cycle. STIG uses the traditional constant pressure waste heat boiler technology. Operation is limited to near full load because low exhaust temperature at partial load would cause dysfunctional heat imbalance in the heat recovery steam generator (HRSG). The Cheng Cycle, in comparison, adopted a variable pressure HRSG so its operating range extends from idle to full load. This variable pressure HRSG allows full heat recovery, whereas STIG has to limit its operating range to maintain heat transfer balance. This unique HRSG design means that the Cheng Cycle is a thermal feedback cycle. As in any feedback system it could oscillate, in this case the oscillations are between fuel-flow and steam-flow. The Cheng Cycle utilizes digital control technology to the system. The integrated system provides the user with smooth operation and rapid start-up and load change capability.


2017 ◽  
Vol 207 ◽  
pp. 218-229 ◽  
Author(s):  
Ward De Paepe ◽  
Marina Montero Carrero ◽  
Svend Bram ◽  
Francesco Contino ◽  
Alessandro Parente

2017 ◽  
Vol 105 ◽  
pp. 1712-1718 ◽  
Author(s):  
Ward De Paepe ◽  
Marina Montero Carrerro ◽  
Svend Bram ◽  
Alessandro Parente ◽  
Francesco Contino

Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document