Improvement of Unstable Characteristics of an Axial Flow Fan by Air-Separator Equipment

1987 ◽  
Vol 109 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Y. Miyake ◽  
T. Inaba ◽  
T. Kato

The authors’ previous papers demonstrated that an air-separator is the most effective equipment among various different types for the improvement of unstable characteristics of an axial-flow rotor. Further experiments revealed that this equipment could eliminate the unstable characteristics thoroughly even for a build which originally accompanied a heavy rotating stall. This paper describes the geometric conditions to realize this and discusses its performance mechanism on the basis of the experiments showing the discharge distribution of the bleeding flow from the blade tip to separator passage as well as the pressure distribution in a blade passage at the tip section of the rotor. It is suggested that the equipment is equally useful at any stage of a multistage rotor.

Author(s):  
S D Hill ◽  
R L Elder ◽  
A B McKenzie

This paper deals with an experimental investigation into the influence of a vaned recess casing treatment on the performance of an industrial-type axial-flow fan with a hub-tip ratio of 0.4. The treatment has been tested in a variety of configurations relative to the fan, with an emphasis on the amount of fan blade tip exposure to the treatment. Two sets of blading, one of which is of the fully reversible type, have been investigated. Detailed flow measurements have been carried out with a slanted hot wire probe to provide an insight into the operation of the device and into the nature of the rotating stall in the solid casing configuration. Strain gauges have been employed to enable blade stresses to be recorded and an in-duct microphone to enable comparative tests on fan noise has also been used.


Author(s):  
Takahiro Nishioka ◽  
Shuuji Kuroda ◽  
Tadashi Kozu

An air-separator for extending the operating range of a variable-pitch axial-flow fan has been developed. It has a circular-are outer casing, a part of which forms the guide vane at the inlet of the air-separator. To obtain a wide operating range and to minimize penalties in terms of efficiency and noise, the influence of exposure and clearance ratios at various stagger-angle settings for rotor blades in low-speed and high-speed axial flow fans was experimentally investigated. Flow distributions and pressure fluctuations downstream of the rotor were also measured in order to investigate the influence of the air-separator on rotating stall. The distributions and fluctuations suggested that the air-separator decreased the blockage effect near the rotor tip and suppressed the rotating stall. Moreover, stall-margin and pressure-rise improvements were independent of the clearance ratio. These improvements depended on the exposure ratio and stagger-angle settings for the rotor blades. The fan efficiency for the air-separator also depended on the exposure ratio. In addition, the efficiency had the opposite tendency to the stall-margin and pressure-rise improvements. In contrast, the noise for the air-separator was independent of the exposure ratio and decreased as the clearance ratio increased. For the optimum combination of the exposure and clearance ratios, the stall-margin and pressure-rise were improved by over 20% with minimized penalties in terms of efficiency and noise. It is concluded from these results that the developed air-separator can provide a wide operating range for a variable-pitch axial-flow fan.


2004 ◽  
Vol 2004 (0) ◽  
pp. 14 ◽  
Author(s):  
Takuhiro NISHIOKA ◽  
Shuuji KURODA ◽  
Tsukasa NAGANO

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Nobuyuki Yamaguchi ◽  
Masayuki Ogata ◽  
Yohei Kato

An improved construction of air-separator device, which has radial-vanes embedded within its inlet circumferential opening with their leading-edges facing the moving tips of the fan rotor-blades so as to scoop the tip flow, was investigated with respect to the stall-prevention effect on a low-speed, single-stage, lightly loaded, axial-flow fan. Stall-prevention effects by the separator layout, relative location of the separator to the rotor-blades, and widths of the openings of the air-separator inlet and exit were parametrically surveyed. As far as the particular fan is concerned, the device together with the best relative location has proved to be able to eliminate effectively the stall zone having existed in the original solid-wall characteristics, which has confirmed the promising potential of the device. Guidelines were obtained from the data for optimizing relative locations of the device to the rotor-blades, maximizing the stall-prevention effect of the device, and minimizing the axial size of the device for a required stall-prevention effect, at least for the particular fan and possibly for fans of similar light-load fans. The data suggest the changing internal flow conditions affected by the device conditions.


1986 ◽  
Vol 29 (256) ◽  
pp. 3394-3401
Author(s):  
Yutaka MIYAKE ◽  
Takehiko INABA ◽  
Yoshikiyo NISHIKAWA ◽  
Ikutaro NOJI ◽  
Tetsuaki KATO

1997 ◽  
Vol 3 (4) ◽  
pp. 269-276 ◽  
Author(s):  
Tsutomu Adachi ◽  
Yutaka Yamashita ◽  
Kennichiro Yasuhara ◽  
Tatsuo Kawai

Three dimensional steady and unsteady velocity distributions in the axial flow fan were measured using a hot wire probe for various operational conditions, various rotational speeds and various measuring positions. For measuring the velocity distributions in the blade passage, a specially designed and manufactured hot wire traversing apparatus was used. Steady velocity distributions, turning angles, effects of incident to the cascade, flow leakage through the tip clearance and effects of the flow separation show the flow phenomena through the blade passages. Unsteady velocity distributions show time dependent procedures of the wake flowing through the moving blade passage. Considering these results of measurements, the effects of the upstream stationary blade and the effects of Reynolds number on the flow were considered.


1998 ◽  
Vol 64 (617) ◽  
pp. 148-154
Author(s):  
Takahiro NISHIOKA ◽  
Tadashi KOOZU ◽  
Kouji NAKAGAWA

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 958
Author(s):  
Chenlong Jiang ◽  
Mengjiao Li ◽  
Enda Li ◽  
Xingye Zhu

Based on Shear Stress Transport (SST) turbulence model for unsteady simulation of an axial-flow fan, this paper studies the time-frequency information in the hump region, and investigates the disturbance information of spike and modal wave under different flow coefficients based on continuous wavelet transform (CWT). The results show that before the hump point, the low-frequency modal wave occupies the main disturbance form and circularly propagates at 1/10 of the rotor speed, and the axial-flow fan does not enter the stall stage; while after the flow coefficient reduces to the hump point, the spike wave with higher frequency replaces the modal wave as the main disturbance mode while the axial-flow fan enters the stall stage. Through in-depth investigation of unsteady flow characteristics under the hump point, it is found that after experiencing the emerging spike, with the sharp increase of incidence angle, some flow distortions appear on the intake surface, and further induce some flow paths to form stall vortices. When a path goes into stall stage, the airflow state is greatly affected, the inverse flow and air separation phenomenon in the rim region increase significantly, and the flow capacity decreases significantly, so the flow capacity in the hub region increases correspondingly. The flow path distortion of tip leakage flow (TLF) and leading edge (LE) spillage caused by the stall vortices are the main inducements of rotating stall.


Sign in / Sign up

Export Citation Format

Share Document