Experimental Investigation of Laminar Mixed Convection in Tubes With Longitudinal Internal Fins

1988 ◽  
Vol 110 (2) ◽  
pp. 366-372 ◽  
Author(s):  
I. M. Rustum ◽  
H. M. Soliman

Experiments were performed to study the pressure drop and heat transfer characteristics for laminar flow in a smooth tube and four tubes with internal longitudinal fins, with emphasis on showing how the experimental results relate to previous analytical predictions. Measured quantities include the fully developed friction factor, local and fully developed Nusselt numbers. Good agreements were obtained between the friction factor results and previous analytical predictions, and between Nusselt number results for the smooth tube and previous experiments. Free convection is shown to have a strong influence on heat transfer in finned tubes and the results approach the forced-convection predictions as Rayleigh number decreases. Internal fins appear to retard the onset of significant free convective currents; however, once initiated, a faster rate of heat transfer enhancement occurs compared to the smooth tube. An empirical correlation of fully developed Nusselt number is presented taking into account the influences of tube geometry.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ankit Tiwari ◽  
Savas Yavuzkurt

The goal of this study is to evaluate the computational fluid dynamic (CFD) predictions of friction factor and Nusselt number from six different low Reynolds number k–ε (LRKE) models namely Chang–Hsieh–Chen (CHC), Launder–Sharma (LS), Abid, Lam–Bremhorst (LB), Yang–Shih (YS), and Abe–Kondoh–Nagano (AKN) for various heat transfer enhancement applications. Standard and realizable k–ε (RKE) models with enhanced wall treatment (EWT) were also studied. CFD predictions of Nusselt number, Stanton number, and friction factor were compared with experimental data from literature. Various parameters such as effect of type of mesh element and grid resolution were also studied. It is recommended that a model, which predicts reasonably accurate values for both friction factor and Nusselt number, should be chosen over disparate models, which may predict either of these quantities more accurately. This is based on the performance evaluation criterion developed by Webb and Kim (2006, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Group, pp. 1–72) for heat transfer enhancement. It was found that all LRKE models failed to predict friction factor and Nusselt number accurately (within 30%) for transverse rectangular ribs, whereas standard and RKE with EWT predicted friction factor and Nusselt number within 25%. Conversely, for transverse grooves, AKN, AKN/CHC, and LS (with modified constants) models accurately predicted (within 30%) both friction factor and Nusselt number for rectangular, circular, and trapezoidal grooves, respectively. In these cases, standard and RKE predictions were inaccurate and inconsistent. For longitudinal fins, Standard/RKE model, AKN, LS and Abid LRKE models gave the friction factor and Nusselt number predictions within 25%, with the AKN model being the most accurate.


Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


2021 ◽  
pp. 183-183
Author(s):  
Sendogan Karagoz ◽  
Semih Erzincanli ◽  
Orhan Yildirim ◽  
Ilker Firat ◽  
Mehmet Kaya ◽  
...  

This experimental study deals with the heat transfer and friction effects of sinusoidal part turbulators for single-phase flows occurring in a circular shaped pipe. Turbulators with three different radius values are placed in the pipe to make the flow turbulent. In this way, changes in Nusselt number and friction coefficient are examined. As a result of the experiments made with Reynolds numbers in the range of 6614-20710, the increase rates of the Nusselt numbers of turbulators with 20 mm, 110 mm and 220 mm radius compared to the empty pipe were obtained as 153.49%, 85.36%, and 52.09%, respectively. As a result of the decrease in the radius, there was an increase in the Nusselt number and the friction factor. Parallel to the Nusselt number, the highest friction factor was obtained in the smallest radius turbulator. It was found that the thermal enhancement factors of 110 mm and 220 mm radius turbulators increased by 179.54% and 132.95%, respectively, compared to the 20 mm radius turbulator. Similarly, it was determined that the thermal enhancement factor of the 110 mm radius turbulator increased by 20% compared to the 220 mm radius turbulator.


Author(s):  
Guidong Chen ◽  
Qiuwang Wang

In the present paper, flow and heat transfer characteristics of shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) is experimentally studied. Correlations for heat transfer and pressure drop, which are estimated by Nusselt number and friction factor, are fitted by experiment data for thermal design. Computational Fluid Dynamic (CFD) method is also used to compare the heat transfer and flow performance of STHX with continuous helical baffles (CH-STHX), STHX with combined helical baffles (CMH-STHX) and STHX with discontinuous helical baffles (DCH-STHX). The numerical results show that, for the same Reynolds number, the Nusselt numbers Nuo of the CMH-STHX and CH-STHX is about 37.6%, 78.2% higher than that of the DCH-STHX; the friction factor fo of the CH-STHX is about 14.8% and 150.2% higher than that of CMH-STHX and DCH-STHX. If the velocity ratios RCMH, CH and RDCH, CH are bigger than 1.55 and 4.0 in the Nusselt number range from 40 to 70, the CMH-STHX and the DCH-STHX may have higher Nusselt numbers than the CH-STHX for the same mass flow rate in the shell side.


2014 ◽  
Vol 592-594 ◽  
pp. 1590-1595 ◽  
Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using three kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with converging and diverging conical strips is more effective compared to other inserts. Key words: Heat transfer, enhancement, turbulent flow, conical strip inserts, friction factor, pressure drop.


2014 ◽  
Vol 619 ◽  
pp. 125-129 ◽  
Author(s):  
Tabish Alam ◽  
R.P. Saini ◽  
J.S. Saini

An experimental study of enhancement of heat transfer due to V-shaped perforated blockages attached to the heated surface has been presented in this paper. The duct equipped with perforated V-blocks had an aspect ratio (W/H) of 12, relative blockage height ratio (e/H) of 0.8, angle of attack (α) of 60° and open area ratio (β) of 20%, while relative pitch ratio (P/e) was varied from 4 to 12. The values of Nusselt number and friction factor of the duct with blockages were compared with values of Nusselt number and friction factor of the smooth duct operating under similar experimental conditions. It was found that there was a significant effect on the Nusselt number ratio and friction factor ratio when the pitch ratio was changed and there was exist an optimum value of pitch ratio. Thermal hydraulic performance was found to be maximum corresponding to relative pitch value of 8.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 754
Author(s):  
Muhammad Ammar Ali ◽  
Muhammad Sajid ◽  
Emad Uddin ◽  
Niaz Bahadur ◽  
Zaib Ali

In this study, the pressure drop and heat transfer characteristics of smooth tube and internal helically micro-finned tubes with two different fin-to-fin height ratios i.e., equal fin height and alternating fin height, are computationally analysed. The tube with alternating fin height is analysed for proof of concept of pressure drop reduction. A single phase steady turbulent flow model is used with a Reynolds number ranging from 12,000 to 54,000. Water is used as working fluid with inlet temperature of 55 °C and constant wall temperature of 20 °C is applied. Friction factor, heat transfer coefficient, Nusselt number, and Thermal Performance Index are evaluated and analysed. The numerical results are validated by comparison with the experimental and numerical data from literature. The results showed that the thermal performance is enhanced due to helically finned tube for a range of Reynolds numbers, but at the expense of increased pressure drop as compared to a smooth tube. The helically finned tube with alternating fin heights showed a 5% decrease in friction factor and <1% decrease in heat transfer coefficient when compared with the equal fin heights tube, making it a suitable choice for heat transfer applications.


Author(s):  
Khwanchit Wongcharee ◽  
Somsak Pethkool ◽  
Chinaruk Thianpong

This paper describes an experimental study of turbulent convective heat transfer and flow friction characteristics in a double tube heat exchanger equipped with propellers (2 blade-type). The propellers are used as the decaying swirl generators in the inner tube. The experiments were performed using the propellers with four different interval lengths (l = 1D, 2D, 3D and 4D where D is diameter of the inner tube), for the Reynolds number ranging from 5000 to 32,000, using water with temperature of 27°C and 70°C as cold and hot working fluids, respectively. The data of the tube equipped with the propellers are reported together with those of the plain tube, for comparison. The obtained results demonstrate that the heat transfer rate in term of Nusselt number (Nu) and friction factor (f) in the tube with propellers are higher than those in the plain tube at the similar operating conditions. This is due to the chaotic mixing and efficient interruption of thermal boundary layer caused by the propellers. In addition, the Nusselt number and friction factor in the tube fitted with the propellers increase as the interval length decreases. Depending on Reynolds number and interval length, Nusselt numbers and friction factors in the tube fitted with the propellers are augmented to 1.95 to 2.3 times and 5.8 to 13.2 times of those in the plain tube. In addition, the correlations of the Nusselt number (Nu) and the friction factor (f) for tube fitted with the propellers are reported and the performance evaluation to access the real benefits of using the turbulators is also determined.


Author(s):  
Yacine Ould-Amer

A numerical study is performed to investigate the performance of an innovative thermal system to improve the heat transfer in horizontal annulus. With attached four porous blocks on the inner cylinder, steady laminar mixed convection is presented for the fully developed region of horizontal concentric annuli. Results are presented for a range of the values of the Grashoff number, the Darcy number and the conductivity ratio between the porous medium and the fluid. Results are presented in the form of contours plots of the streamlines and for the temperature isotherms, and in terms of the overall heat transfer coefficients and friction factor. The average Nusselt number increases significantly with an increase of the conductivity ratio and the Grashoff number. With the use of the four porous blocks, the friction factor is consequently increased compared with the situation without porous blocks. The decrease of the Darcy number leads to an increase of the friction factor. If the fully fluid case is taken as a reference, the use of porous blocks is justified only when the ratio of the average Nusselt number to the friction factor is enhanced. The enhancement occurs for the Darcy number higher than 10−3 and for the higher conductivity ratio.


2014 ◽  
Vol 931-932 ◽  
pp. 1193-1197 ◽  
Author(s):  
Prawat Soodkaew ◽  
Sompol Skullong ◽  
Pongjet Promvonge ◽  
Watanyu Pairok

This article presents the study of heat transfer enhancement in a uniform heat-fluxed channel fitted with discrete V-shaped baffles. The experiments are carried out by varying airflow rate for Reynolds number ranging from 4100 to 22,000. The V-baffles with relative height ratio, e/H = 0.15 and the attack angle, α = 45o, are mounted repeatedly on the upper plate only, similar to an absorber plate of solar air heater systems. The effects of four baffle-pitch to channel-height ratios (PR= 0.5, 1.0, 1.5 and 2.0) on heat transfer in terms of Nusselt number and pressure loss in the form of friction factor are experimentally investigated. The experimental results show that the use of the discrete V-baffles leads to a considerable increase in Nusselt number and friction factor in comparison to the smooth channel alone. The V-baffled channel with PR=0.5 provides the highest heat transfer, friction factor and thermal enhancement factor.


Sign in / Sign up

Export Citation Format

Share Document