Induction Electrohydrodynamic Pump in a Vertical Configuration: Part 2—Experimental Study

1989 ◽  
Vol 111 (3) ◽  
pp. 670-674 ◽  
Author(s):  
J. Seyed-Yagoobi ◽  
J. C. Chato ◽  
J. M. Crowley ◽  
P. T. Krein

An induction electrohydrodynamic (EHD) pump in axisymmetric, vertical configuration was designed and built. The flow rates were measured for various temperature profiles and several values of frequency, voltage, wavelength, and electric conductivity. The experimental data are generally in good agreement with the theoretical model presented in Part 1. With the present apparatus at relatively low voltages, velocities four times higher than natural circulation velocity are easily obtained. The external pressure load and entrance temperature profile play important roles on the operation of the pump and must be considered carefully in the design.

1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


1994 ◽  
Author(s):  
K. Imanari

A theoretical model is proposed for the spanwise mixing caused by periodic incoming wakes in the context of turbulent diffusion in axial-flow compressors prior to repeating-stage conditions. The model was used to predict the spanwise mixing coefficients across a stator of a single-stage compressor without IGVs. The correctness of the theory was demonstrated by the results that the predicted values were in good agreement with the associated experimental data.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modeled theoretically using the so-called orifice equations. In Part I of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flows, and the incompressible equations were solved for axisymmetric rotationally induced (RI) ingress. In Part II, the incompressible equations are solved for nonaxisymmetric externally induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a “saw-tooth model” is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part I for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with the available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modelled theoretically using the so-called orifice equations. In Part 1 (ASME GT 2009-59121) of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flow, and the incompressible equations were solved for axisymmetric rotationally-induced (RI) ingress. In Part 2, the incompressible equations are solved for non-axisymmetric externally-induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a ‘saw-tooth model’ is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part 1 for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
A Robson ◽  
T Grassie ◽  
J Kubie

A full theoretical model of a low-temperature differential Stirling engine is developed in the current paper. The model, which starts from the first principles, gives a full differential description of the major components of the engine: the behaviour of the gas in the expansion and the compression spaces; the behaviour of the gas in the regenerator; the dynamic behaviour of the displacer; and the power piston/flywheel assembly. A small fully instrumented engine is used to validate the model. The theoretical model is in good agreement with the experimental data, and describes well all features exhibited by the engine.


Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

In Zhang et al. [1], a unified hydrodynamic model is developed for prediction of gas-liquid pipe flow behavior based on slug dynamics. In this study, the new model is validated with extensive experimental data acquired with different pipe diameters, inclination angles, fluid physical properties, gas-liquid flow rates and flow patterns. Good agreement is observed in every aspect of the two-phase pipe flow.


2015 ◽  
Vol 29 (27) ◽  
pp. 1550161 ◽  
Author(s):  
Kuldeep Kholiya ◽  
Jeewan Chandra

On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope [Formula: see text] of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.


1976 ◽  
Vol 43 (2) ◽  
pp. 325-329 ◽  
Author(s):  
S. S. Chen ◽  
M. W. Wambsganss ◽  
J. A. Jendrzejczyk

This paper presents an analytical and experimental study of a cylindrical rod vibrating in a viscous fluid enclosed by a rigid, concentric cylindrical shell. A closed-form solution for the added mass and damping coefficient is obtained and a series of experiments with cantilevered rods vibrating in various viscous fluids is performed. Experimental data and theoretical results are in good agreement.


1983 ◽  
Vol 105 (4) ◽  
pp. 381-388 ◽  
Author(s):  
A. L. Patra ◽  
E. M. Afify

A mechanical lung model with branching up to five generations, developed from an actual human lung, is used to study experimentally the velocity profiles in the trachea and the main branches. Three different flow rates representing light, medium, and heavy breathings have been simulated for both inhalation and exhalation. The velocity profiles, except for the one in the trachea in the frontal direction due to exhalation, are in good agreement with the velocity profiles in simplified models of published literature.


Sign in / Sign up

Export Citation Format

Share Document