Performance Characteristics of a Concentric Annular Heat Pipe: Part I—Experimental Prediction and Analysis of the Capillary Limit

1989 ◽  
Vol 111 (4) ◽  
pp. 844-850 ◽  
Author(s):  
A. Faghri ◽  
S. Thomas

This paper describes the design, testing, and theoretical capillary limit prediction of a new heat pipe configuration, which is the concentric annular heat pipe. The concentric annular heat pipe is made of two concentric pipes of unequal diameters that create an annular vapor space. With this arrangement, capillary wicks can be placed on both the inside of the outer pipe and the outside of the inner pipe. This design significantly increases the heat capacity per unit length compared to conventional heat pipes, since the cross-sectional area of the wick as well as the surface area for heating and cooling are increased. The heat pipe was tested for the temperature distribution in the three sections of the heat pipe under various tilt angles and heating loads through the inner and outer pipes in the evaporator section. A simple analysis for the prediction of the capillary limitation of the concentric annular heat pipe is presented.

2000 ◽  
Author(s):  
Y. Cao ◽  
J. Ling ◽  
R. Rivir ◽  
C. MacArthur

Abstract Radially rotating heat pipes have been proposed for cooling gas turbine disks working at high temperatures. A disk incorporating the heat pipe would have an enhanced thermal dissipation capacity and a much lower temperature at the disk rim and dovetail surface. In this paper, extensive numerical simulations have been made for heat-pipe-cooled disks. Thermal performances are compared for the disks with and without incorporating the heat pipe at different heating and cooling conditions. The numerical results presented in this paper indicate that radially rotating heat pipes can significantly reduce the maximum and average temperatures at the disk rim and dovetail surface under a high heat flux working condition. In general, the maximum and average temperatures at the disk rim and dovetail surface could be reduced by above 250 and 150 degrees, respectively, compared to those of the disk without the heat pipe. As a result, a disk incorporating radially rotating heat pipes could alleviate temperature-related problems and allow a gas turbine to work at a much higher temperature.


2012 ◽  
Vol 499 ◽  
pp. 21-26 ◽  
Author(s):  
Xi Bing Li ◽  
Z.M. Shi ◽  
S.G. Wang ◽  
Q.M. Hu ◽  
L. Bao ◽  
...  

For great progress in heat pipe technology, a micro heat pipe has become an ideal heat dissipating device in high heat-flux electronic products, and capillary limit is the main factor affecting its heat transfer performance. Based on analyses of capillary limit and currently commonly-used groove structures, this paper built capillary limit models for micro heat pipes with dovetail-groove, rectangular-groove, trapezoidal-groove and V-groove wick structures respectively for theoretical analyses. The analysis results show that better heat transfer performances can be obtained in micro heat pipes with small-angle dovetail (i.e. a sector structure), rectangular and small-angle trapezoidal grooved wick structures when groove depth is 0.2-0.3mm and top-width-to-depth ratio is 1.2-1.5.


Author(s):  
C. B. Sobhan ◽  
G. P. (Bud) Peterson

The fluid flow and heat transfer characteristics of micro heat pipes are analyzed theoretically, in order to understand the physical phenomena and quantify the influence of various parameters on overall thermal performance of these devices. A one-dimensional model is utilized to solve the governing equations for the liquid/vapor flow and the heat transfer in the heat pipe channel. Variations in the liquid and vapor cross-sectional areas along the axial length of the heat pipe are included and the equations are solved using an implicit finite difference scheme. Appropriate models for fluid friction in small passages with varying cross-sectional areas have been incorporated to yield the axial distribution of the meniscus radius of curvature and the velocity, temperature and pressure in both the liquid and the vapor phases. Using this information, the effective thermal conductivity of the micro heat pipe is modeled, and parametric studies are performed by changing the heat load and cooling rate. The results of the analysis are discussed and compared with other theoretical models and experimental results found in the literature. By so doing, this analysis provides greater insight into the physical phenomena of flow and heat transfer in micro heat pipes and identifies a methodology for optimizing the design of these devices.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Lazarus Godson Asirvatham ◽  
Rajesh Nimmagadda ◽  
Somchai Wongwises

The paper presents the enhancement in the operational limits (boiling, entrainment, sonic, viscous and capillary limits) of heat pipes using silver nanoparticles dispersed in de-ionized (DI) water. The tested nanoparticles concentration ranged from 0.003 vol. % to 0.009 vol. % with particle diameter of <100 nm. The nanofluid as working fluid enhances the effective thermal conductivity of heat pipe by 40%, 58%, and 70%, respectively, for volume concentrations of 0.003%, 0.006%, and 0.009%. For an input heat load of 60 W, the adiabatic vapor temperatures of nanofluid based heat pipes are reduced by 9 °C, 18 °C, and 20 °C, when compared with DI water. This reduction in the operating temperature enhances the thermophysical properties of working fluid and gives a change in the various operational limits of heat pipes. The use of silver nanoparticles with 0.009 vol. % concentration increases the capillary limit value of heat pipe by 54% when compared with DI water. This in turn improves the performance and operating range of the heat pipe.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5398
Author(s):  
Birol Kılkış ◽  
Malik Çağlar ◽  
Mert Şengül

This paper addresses the challenges the policymakers face concerning the EU decarbonization and total electrification roadmaps towards the Paris Agreement set forth to solve the global warming problem within the framework of a 100% renewable heating and cooling target. A new holistic model was developed based on the Rational Exergy Management Model (REMM). This model optimally solves the energy and exergy conflicts between the benefits of using widely available, low-temperature, low-exergy waste and renewable energy sources, like solar energy, and the inability of existing heating equipment, which requires higher exergy to cope with such low temperatures. In recognition of the challenges of retrofitting existing buildings in the EU stock, most of which are more than fifty years old, this study has developed a multi-pronged solution set. The first prong is the development of heating and cooling equipment with heat pipes that may be customized for supply temperatures as low as 35 °C in heating and as high as 17 °C in cooling, by which equipment oversizing is kept minimal, compared to standard equipment like conventional radiators or fan coils. It is shown that circulating pump capacity requirements are also minimized, leading to an overall reduction of CO2 emissions responsibility in terms of both direct, avoidable, and embodied terms. In this respect, a new heat pipe radiator prototype is presented, performance analyses are given, and the results are compared with a standard radiator. Comparative results show that such a new heat pipe radiator may be less than half of the weight of the conventional radiator, which needs to be oversized three times more to operate at 35 °C below the rated capacity. The application of heat pipes in renewable energy systems with the highest energy efficiency and exergy rationality establishes the second prong of the paper. A next-generation solar photo-voltaic-thermal (PVT) panel design is aimed to maximize the solar exergy utilization and minimize the exergy destruction taking place between the heating equipment. This solar panel design has an optimum power to heat ratio at low temperatures, perfectly fitting the heat pipe radiator demand. This design eliminates the onboard circulation pump, includes a phase-changing material (PCM) layer and thermoelectric generator (TEG) units for additional power generation, all sandwiched in a single panel. As a third prong, the paper introduces an optimum district sizing algorithm for minimum CO2 emissions responsibility for low-temperature heating systems by minimizing the exergy destructions. A solar prosumer house example is given addressing the three prongs with a heat pipe radiator system, next-generation solar PVT panels on the roof, and heat piped on-site thermal energy storage (TES). Results showed that total CO2 emissions responsibility is reduced by 96.8%. The results are discussed, aiming at recommendations, especially directed to policymakers, to satisfy the Paris Agreement.


2006 ◽  
Vol 129 (2) ◽  
pp. 137-140 ◽  
Author(s):  
A. Asias ◽  
M. Shusser ◽  
A. Leitner ◽  
A. Nabi ◽  
G. Grossman

To investigate the feasibility of using heat pipes in airborne systems, heat pipe performance at large axial accelerations in the range of 3–12g was studied experimentally. The heat input chosen corresponded to the optimal heat pipe performance without acceleration. When applied against the direction of the liquid flow (unfavorable orientation) the accelerations were large enough to exceed the capillary limit, as was seen from the strong increase in the evaporator temperature. The influence of accelerations in the direction of the liquid flow (favorable orientation) was found to be more complicated. While at the acceleration of 3g the heat pipe performance improved, at higher accelerations instability developed with resulting large-amplitude oscillations of the evaporator temperature. The instability found in these experiments is thought to be related to the geyser effect observed in thermosyphons.


Author(s):  
Mahboobe Mahdavi ◽  
Amir Faghri

Abstract A comprehensive three-dimensional numerical model is developed to evaluate the effect of bending on water-copper cylindrical heat pipes. This model distinguishes itself from other models by its ability to uniquely determine the operating pressure of the heat pipe based on the operating and physical conditions. The effects of one 90-degree bend and two 90-degree bends are evaluated on the performance of a heat pipe. Two types of wicks are considered: a screen mesh wick and a sintered powder wick. The obtained results show that bending does affect the vapor pressure drop; however, the changes are not significant when compared to the operating pressure of the heat pipe. If the bending is performed in a manner where the wick is not damaged and the liquid is not blocked from returning to the evaporator, the performance of the heat pipe will not be affected significantly. In addition, if the heat pipe is operating in the horizontal direction, where both evaporator and condenser legs are at the same level, bending does not affect the liquid pressure drop significantly; however, the screen mesh does provide a higher capillary limit. The results also showed that the effects of gravity can be important when bending heat pipes and consideration should be given for this factor. When the bent heat pipe works against gravity, the sintered powder wick heat pipes showed higher capillary limits.


2010 ◽  
Vol 29-32 ◽  
pp. 1695-1700
Author(s):  
Shi Gang Wang ◽  
Xi Bing Li ◽  
Bai Rui Tao ◽  
Hong Xia Zhang

Through combination of experimental investigation with theoretical optimum design, this paper determined the crucial factors in affecting the heat transfer capacity in micro heat pipes with a trapezium-grooved wick structure are capillary limit and entrainment limit, and verified the validity of the heat transfer models thus built.


2000 ◽  
Vol 123 (1) ◽  
pp. 120-129 ◽  
Author(s):  
R. Michael Castle ◽  
Scott K. Thomas ◽  
Kirk L. Yerkes

The results of a recently completed experimental and analytical study showed that the capillary limit of a helically-grooved heat pipe (HGHP) was increased significantly when the transverse body force field was increased. This was due to the geometry of the helical groove wick structure. The objective of the present research was to experimentally determine the performance of revolving helically-grooved heat pipes when the working fluid inventory was varied. This report describes the measurement of the geometry of the heat pipe wick structure and the construction and testing of a heat pipe filling station. In addition, an extensive analysis of the uncertainty involved in the filling procedure and working fluid inventory has been outlined. Experimental measurements include the maximum heat transport, thermal resistance and evaporative heat transfer coefficient of the revolving helically grooved heat pipe for radial accelerations of |a⃗r|=0.0, 2.0, 4.0, 6.0, 8.0, and 10.0-g and working fluid fills of G=0.5, 1.0, and 1.5. An existing capillary limit model was updated and comparisons were made to the present experimental data.


Author(s):  
Doriane Ibtissam Hassaine Daoudji ◽  
Quentin Struss ◽  
Amrid Amnache ◽  
Étienne Léveillé ◽  
Mahmood Reza Salim Shirazy ◽  
...  

Abstract This paper shows the performance enhancement of heat pipes by tailoring the density distribution of micropillar wicks to minimize viscous pressure loss while maintaining sufficient capillary pumping. In a heat pipe, capillarity and permeability are linked, since small pores create higher capillary pumping while unfortunately inducing more pressure drop along the heat pipe. This pressure loss accumulates along the heat pipe, leading to a non-uniform pressure difference between the liquid and vapor. Therefore, we do not need a uniform capillary pressure to withstand this difference. This provides the opportunity to spatially tailor the wick structure, aiming for a high capillarity to pump the liquid, but a low permeability to induce less pressure loss. Our study offers a compromise between capillarity and permeability by designing the density distribution of the pillar wick structure. This density distribution, which was not studied before, will be shown to enhance the heat pipe performance. The theoretical models show that a tailored density distribution can enhance the heat pipe performance by a factor of 1.5. To support this result, ‘rate of rise’ measurements along a pillar array demonstrate that the liquid pressure loss in a tailored density array are less compared to a constant pillar density.


Sign in / Sign up

Export Citation Format

Share Document