Vibrations of an Elastically Mounted Spinning Rotor Partially Filled With Liquid

1982 ◽  
Vol 104 (2) ◽  
pp. 389-396 ◽  
Author(s):  
G. Lichtenberg

The stability of a rotor with a cylindrical cavity, spinning with constant angular velocity and partially filled with an inviscid, incompressible fluid is studied. The rotor is elastically supported on a vertically mounted massless shaft in overhung position. A set of coupled linearized spatial equations of motion of the rotor and field equations, as well as boundary conditions of the liquid, is established and solved, leading to a characteristic equation. First numerical results predict a wide range of rotor speeds, where the system performs unstable motions caused by a two-dimensional surface wave of the liquid. The stability boundaries are calculated for a flat rotor in dependence on the mass of the contained liquid and agree extremely well with experimental data.

1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


2021 ◽  
pp. 2150101
Author(s):  
S. A. Paston

We study the possibility to explain the mystery of the dark matter (DM) through the transition from General Relativity to embedding gravity. This modification of gravity, which was proposed by Regge and Teitelboim, is based on a simple string-inspired geometrical principle: our spacetime is considered here as a four-dimensional surface in a flat bulk. We show that among the solutions of embedding gravity, there is a class of solutions equivalent to solutions of GR with an additional contribution of non-relativistic embedding matter, which can serve as cold DM. We prove the stability of such type of solutions and obtain an explicit form of the equations of motion of embedding matter in the non-relativistic limit. According to them, embedding matter turns out to have a certain self-interaction, which could be useful in the context of solving the core-cusp problem that appears in the [Formula: see text]CDM model.


1974 ◽  
Vol 63 (3) ◽  
pp. 563-576 ◽  
Author(s):  
C. F. Chen

We consider the two-dimensional problem of a linearly stratified salt solution contained between two infinite vertical plates. The fluid and the plates are initially at the same temperature. At t = 0, one of the plates is given a step increase in temperature, while the other is maintained at the initial temperature. A time-dependent basic flow is thus generated. The stability of such a time-dependent flow is analysed using an initial value problem approach to the linear stability equations. The method consists of initially distributing small random disturbances of given vertical wavelength throughout the fluid. The disturbances may be in the vorticity, temperature or salinity. The linearized field equations are integrated numerically. The growth or decay of the kinetic energy of the perturbation delineates unstable and stable states. Results have been obtained for a wide range of gap widths. The critical wavelength and the critical Rayleigh number compare favourably with those obtained previously in both physical and numerical experiments.


1977 ◽  
Vol 83 (1) ◽  
pp. 159-161 ◽  
Author(s):  
D. Michael Milder

The canonical form of the equations for the free-surface elevation and potential of an irrotational fluid is more than a coincidence. The elevation is a ‘generalized coordinate’ field sufficient to define the system Lagrangian without explicit reference to the motion of the fluid interior. The Lagrangian and the associated field equations are complete and self-contained in the two-dimensional surface co-ordinates, but non-local (integro-differential) in form; the canonical equations derived by Miles are just the Hamiltonian counterparts.


Author(s):  
Khaled A. Alhazza ◽  
Ali H. Nayfeh ◽  
Mohammed F. Daqaq

We present a single-input single-output multimode delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever beam. For the purpose of controller design and stability analysis, we consider a reduced-order model consisting of the first n vibration modes. The temporal variation of these modes is represented by a set of nonlinearly-coupled ordinary-differential equations that capture the evolving dynamics of the beam. Considering a linearized version of these equations, we derive a set of analytical conditions that are solved numerically to assess the stability of the closed-loop system. To verify these conditions, we characterize the stability boundaries using the first two vibration modes and compare them to damping contours obtained by long-time integration of the full nonlinear equations of motion. Simulations show excellent agreement between both approaches. We analyze the effect of the size and location of the piezoelectric patch and the location of the sensor on the stability of the response. We show that the stability boundaries are highly dependent on these parameters. Finally, we implement the controller on a cantilever beam for different controller gain-delay combinations and assess the performance using time histories of the beam response. Numerical simulations clearly demonstrate the controller ability to mitigate vibrations emanating from multiple modes simultaneously.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Ashu Sharma ◽  
S. C. Sinha

In most parametrically excited systems, stability boundaries cross each other at several points to form closed unstable subregions commonly known as “instability pockets.” The first aspect of this study explores some general characteristics of these instability pockets and their structural modifications in the parametric space as damping is induced in the system. Second, the possible destabilization of undamped systems due to addition of damping in parametrically excited systems has been investigated. The study is restricted to single degree-of-freedom systems that can be modeled by Hill and quasi-periodic (QP) Hill equations. Three typical cases of Hill equation, e.g., Mathieu, Meissner, and three-frequency Hill equations, are analyzed. State transition matrices of these equations are computed symbolically/analytically over a wide range of system parameters and instability pockets are observed in the stability diagrams of Meissner, three-frequency Hill, and QP Hill equations. Locations of the intersections of stability boundaries (commonly known as coexistence points) are determined using the property that two linearly independent solutions coexist at these intersections. For Meissner equation, with a square wave coefficient, analytical expressions are constructed to compute the number and locations of the instability pockets. In the second part of the study, the symbolic/analytic forms of state transition matrices are used to compute the minimum values of damping coefficients required for instability pockets to vanish from the parametric space. The phenomenon of destabilization due to damping, previously observed in systems with two degrees-of-freedom or higher, is also demonstrated in systems with one degree-of-freedom.


1994 ◽  
Vol 276 ◽  
pp. 273-305 ◽  
Author(s):  
P. A. Davidson

This paper is concerned with the stability of steady inviscid flows with closed streamlines. In increasing order of complexity we look at two-dimensional planar flows, poloidal (r, z) flows, and swirling recirculating flows. In each case we examine the relationship between Arnol’d's variational approach to stability, Moffatt's magnetic relaxation technique, and a more recent relaxation procedure developed by Valliset al.We start with two-dimensional (x, y) flows. Here we show that Moffatt's relaxation procedure will, under a wide range of circumstances, produce Euler flows which are stable. The physical reasons for this are discussed in the context of the well-known membrane analogy. We also show that there is a close relationship between Hamilton's principle and magnetic relaxation. Next, we examine poloidal flows. Here we find that, by and large, our planar results also hold true for axisymmetric flows. In particular, magnetic relaxation once again provides stable Euler flows. Finally, we consider swirling recirculating flows. It transpires that the introduction of swirl has a profound effect on stability. In particular, the flows produced by magnetic relaxation are no longer stable. Indeed, we show that all swirling recirculating Euler flows are potentially unstable to the extent that they fail to satisfy Arnol’d's stability criterion. This is, perhaps, not surprising, as all swirling recirculating flows include regions where the angular momentum decreases with radius and we would intuitively expect such flows to be prone to a centrifugal instability. The paper concludes with a discussion of marginally unstable modes in swirling flows. In particular, we examine the extent to which Rayleigh's original ideas on stability may be generalized, through the use of the Routhian, to include flows with a non-zero recirculation.


Author(s):  
M. H. L. Pryce

The general solution of Born's new field equations is found for the two-dimensional electrostatic case, by which the coordinates are expressed as functions of the field vectors, Conditions for inversion are discussed. Special cases are worked out, namely: singnle charge, two charges, charge in a constant field. Expressions are given for forces acting on the charges. A singular solution is also discussed, with reference to the neutron. The implication of the solutions on the general theory and the equations of motion is discussed in the conclusion.


1974 ◽  
Vol 65 (4) ◽  
pp. 625-645 ◽  
Author(s):  
R. M. Clever ◽  
F. H. Busse

Steady solutions in the form of two-dimensional rolls are obtained for convection in a horizontal layer of fluid heated from below as a function of the Rayleigh and Prandtl numbers. Rigid boundaries of infinite heat conductivity are assumed. The stability of the two-dimensional rolls with respect to three-dimensional disturbances is analysed. It is found that convection rolls are unstable for Prandtl numbers less than about 5 with respect to an oscillatory instability investigated earlier by Busse (1972) for the case of free boundaries. Since the instability is caused by the momentum advection terms in the equations of motion the Rayleigh number for the onset of instability increases strongly with Prandtl number. Good agreement with various experimental observations is found.


Sign in / Sign up

Export Citation Format

Share Document