Dimensionless Solution to the Optimal Design of Spur Gear Sets

1989 ◽  
Vol 111 (2) ◽  
pp. 290-296 ◽  
Author(s):  
R. K. Carroll ◽  
G. E. Johnson

In some earlier papers (Savage, Coy, and Townsend, 1982; Carroll and Johnson, 1984), the design of spur gear sets based on minimum size has been addressed considering the interaction of bending and contact stress constraints. In this paper, we present a new approach to the spur gear problem. The new method makes use of some newly defined dimensionless parameters. In the resulting design space, the optimal dimensionless design (which defines the optimal tooth geometry) is independent of load and speed requirements of the gear set. However the optimum is dependent on the physical properties of the materials used. We introduce a new quantity called the Material Properties Relationship Factor, CMP. In the problem formulation presented here, we show that the optimum will always be constraint bound and it will occur at one of three possible constraint intersections. CMP is used to identify which of three possible constraint intersections is the correct one. After the dimensionless optimum is found, we present an example which shows how to transform the solution back into the real design space considering the load and speed requirements of the gear set along with discrete value constraints on the number of teeth and the diametral pitch. Tabulated optimal dimensionless designs are included for some standard sets of tooth proportions.

1982 ◽  
Vol 104 (4) ◽  
pp. 749-757 ◽  
Author(s):  
M. Savage ◽  
J. J. Coy ◽  
D. P. Townsend

The design of a standard gear mesh is treated with the objective of minimizing the gear size for a given ratio, pinion torque, and allowable tooth strength. Scoring, pitting fatigue, bending fatigue, and the kinematic limits of contact ratio and interference are considered. A design space is defined in terms of the number of teeth on the pinion and the diametral pitch. This space is then combined with the objective function of minimum center distance to obtain an optimal design region. This region defines the number of pinion teeth for the most compact design. The number is a function of the gear ratio only. A design example illustrating this procedure is also given.


2020 ◽  
Vol 9 (1) ◽  
pp. 700-715 ◽  
Author(s):  
Wei Jian ◽  
David Hui ◽  
Denvid Lau

AbstractRecent advances in biomedicine largely rely on the development in nanoengineering. As the access to unique properties in biomaterials is not readily available from traditional techniques, the nanoengineering becomes an effective approach for research and development, by which the performance as well as the functionalities of biomaterials has been greatly improved and enriched. This review focuses on the main materials used in biomedicine, including metallic materials, polymers, and nanocomposites, as well as the major applications of nanoengineering in developing biomedical treatments and techniques. Research that provides an in-depth understanding of material properties and efficient enhancement of material performance using molecular dynamics simulations from the nanoengineering perspective are discussed. The advanced techniques which facilitate nanoengineering in biomedical applications are also presented to inspire further improvement in the future. Furthermore, the potential challenges of nanoengineering in biomedicine are evaluated by summarizing concerned issues and possible solutions.


Author(s):  
Vijitashwa Pandey ◽  
Zissimos P. Mourelatos ◽  
Monica Majcher

Optimization is needed for effective decision based design (DBD). However, a utility function assessed a priori in DBD does not usually capture the preferences of the decision maker over the entire design space. As a result, when the optimizer searches for the optimal design, it traverses (or ends up) in regions where the preference order among different solutions is different from the actual order. For a highly non-convex design space, this can lead to convergence to a grossly suboptimal design depending on the initial design. In this article, we propose two approaches to alleviate this issue. First, we map the trajectory of the solution as generated by the optimizer and generate ranking questions that are presented to the designer to verify the correctness of the utility function. We then propose backtracking rules if a local utility function is very different from the initially assessed function. We demonstrate our methodology using a mathematical example and a welded beam design problem.


Author(s):  
Zezhong C. Chen ◽  
Xujing Yang

Extensive research on G1 biarcs fitting to free-form curves (i.e., Bezier, B-spline, and NURBS curves) has been conducted in the past decades for various purposes, including CNC contouring to make smooth, accurate profile features such as pockets, islands, and sides. However, all the proposed approaches only focused on the approximation errors and the biarc number, not on the radius of the individual fitting arc; so it could be smaller than the cutting tool, which would cause gouging during machining. This work, based on the tool radius pre-determined by the minimum size of the concavities of the design profile, proposes a new approach to approximating the profile with a G1 biarc curve in order to make smooth, accurate, and non-gouged profile features using CNC contouring. The significant new contribution of this work is a new mechanism that ensures all the concave arcs of the fitting curve are larger than the pre-determined tool and the fitting errors meet the specified tolerance. This approach can promote the use of G1 biarc tool paths in the manufacturing industry to make high precision profile features.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Feibo Wang ◽  
Qiaohong Chen ◽  
Qinchuan Li

This paper investigates dimensional optimization of a 2-UPR-RPU parallel manipulator (where U is a universal joint, P a prismatic pair, and R a revolute pair). First, the kinematics and screws of the mechanism are analyzed. Then, three indices developed from motion/force transmission are proposed to evaluate the performance of the 2-UPR-RPU parallel manipulator. Based on the performance atlases obtained, a set of optimal parameters are selected from the optimum region within the parameter design space. Finally, the optimized parameters are determined for practical applications.


Author(s):  
Todd J. Furlong ◽  
Judy M. Vance ◽  
Pierre M. Larochelle

Abstract This paper presents a new approach to using virtual reality (VR) to design spherical mechanisms. VR provides a three dimensional design space where a designer can input design positions using a combination of hand gestures and motions and view the resultant mechanism in stereo using natural head movement to change the viewpoint. Because of the three dimensional nature of the design and verification of spherical mechanisms, VR is examined as a new design interface in this research. In addition to providing a VR environment for design, the research presented in this paper has focused on developing a “design in context” approach to spherical mechanism design. Previous design methods have involved placing coordinate frames along the surface of a constraint sphere. The new “design in context” approach allows a designer to freely place geometric models of movable objects inside an environment consisting of fixed objects. The fixed objects could either act as a base for a mechanism or be potential sources of interference with the motion of the mechanism. This approach allows a designer to perform kinematic synthesis of a mechanism while giving consideration to the interaction of that mechanism with its application environment.


Author(s):  
R. M. R. Barros ◽  
E. G. da Costa ◽  
T. V. Ferreira ◽  
J. F. Araujo ◽  
F. L. M. Andrade

2001 ◽  
Vol 16 (10) ◽  
pp. 849-854 ◽  
Author(s):  
Ashutosh Bhardwaj ◽  
Kirti Ranjan ◽  
Namrata ◽  
Sudeep Chatterji ◽  
Ajay K Srivastava ◽  
...  

2018 ◽  
Vol 24 (5) ◽  
pp. 872-879 ◽  
Author(s):  
Nicholas Alexander Meisel ◽  
David A. Dillard ◽  
Christopher B. Williams

Purpose Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale property changes, which must be understood to appropriately design for this additive manufacturing (AM) process. This paper aims to identify impacts on these composites’ viscoelastic properties due to changes in base material composition and distribution caused by incomplete dithering in small features. Design/methodology/approach Dynamic mechanical analysis (DMA) is used to measure viscoelastic properties of two base PolyJet materials and seven “digital materials”. This establishes the material design space enabled by voxel-by-voxel control. Specimens of decreasing width are tested to explore effects of feature width on dithering’s ability to approximate macroscale material properties; observed changes are correlated to multi-material distribution via an analysis of ingoing layers. Findings DMA shows storage and loss moduli of preset composites trending toward the iso-strain boundary as composition changes. An added iso-stress boundary defines the property space achievable with voxel-by-voxel control. Digital materials exhibit statistically significant changes in material properties when specimen width is under 2 mm. A quantified change in same-material droplet groupings in each composite’s voxel pattern shows that dithering requires a certain geometric size to accurately approximate macroscale properties. Originality/value This paper offers the first quantification of viscoelastic properties for digital materials with respect to material composition and identification of the composite design space enabled through voxel-by-voxel control. Additionally, it identifies a significant shift in material properties with respect to feature width due to dithering pattern changes. This establishes critical design for AM guidelines for engineers designing with digital materials.


Sign in / Sign up

Export Citation Format

Share Document