Turbulent Lubrication of Tilting-Pad Thrust Bearings With Thermal and Elastic Deformations

1985 ◽  
Vol 107 (1) ◽  
pp. 82-86 ◽  
Author(s):  
H. Hashimoto ◽  
S. Wada

Pad deformations of sector-shaped, tilting-pad thrust bearings affecting turbulent lubrication are discussed theoretically. Solving the lubrication and energy equations with turbulence and centrifugal forces and the elastic and moment balance equations of a pad simultaneously, film pressure and temperature distributions, thermal and elastic deformations and inclinations of a pad are obtained. Film thicknesses at a pivot under a constant shaft speed become larger due to pad deformations, whereby pad inclinations increase and friction torque coefficients decrease outstandingly. It is important to introduce the effects of pad deformations when analysing performances of such bearings running in the turbulent conditions.

2003 ◽  
Vol 125 (2) ◽  
pp. 319-324 ◽  
Author(s):  
Sergei B. Glavatskih

This paper compares and analyses operating characteristics of equalizing tilting pad thrust bearings with babbitt and polytetrafluoroethylene (PTFE) composite facings. Each bearing arrangement included six pads with an outer diameter of 228.6 mm and 60 percent offset. The babbitted bearing was typical of design in general use. A PTFE composite was applied instead of the babbitt to a similar bearing. Bearings were tested at different load-speed combinations in the fully flooded mode. Pad temperature distributions, collar temperatures and bearing friction torque were continuously measured. Test results show that the PTFE composite provides excellent thermal insulation so that pad thermal crowning is eliminated. PTFE-faced bearings operate with lower power loss and slightly higher collar temperatures compared to similar babbitted bearings.


1969 ◽  
Vol 91 (4) ◽  
pp. 634-640 ◽  
Author(s):  
V. Castelli ◽  
S. B. Malanoski

The importance of temperature and elasticity effects in bearings have been demonstrated by several authors. This paper offers an efficient method for the simultaneous solution of the Reynolds and energy equations and their coupling with elastic deformation results obtained by variational techniques. Results are presented for centrally pivoted, tilting-pad, sector, thrust bearings.


1983 ◽  
Vol 105 (4) ◽  
pp. 621-624 ◽  
Author(s):  
Z. S. Safar

An analysis is conducted and solutions are provided for the effect of centrifugal forces on hydrostatic misaligned thrust bearings. The results show that centrifugal forces reduce considerably the load capacity, the friction torque and increase the lubricant flow rate. It is found that the effect of centrifugal forces is decreased as tilting of the bearing is increased.


Author(s):  
JC Atwal ◽  
RK Pandey

Performance parameters such as power loss, minimum film thickness, and maximum oil temperature of the sector-shaped tilting pad thrust bearings employing the new micro-structural geometries on pad surfaces have been investigated. The lubrication equation incorporating the mass-conservation issue is discretized using the finite element method and the solution of resulting algebraic equations is obtained employing a Newton-Schur method. The pad equilibrium in the analysis is established using the Newton-Raphson and Braydon methods. The influence of attributes of micro-structures such as depth, circumferential and radial positioning extents have been explored on the performance behaviours. It is found that with the new micro-structured pad surfaces, the performance parameters significantly improved in comparison to conventional plain and conventional rectangular pocketed pads.


2016 ◽  
Vol 103 ◽  
pp. 475-486 ◽  
Author(s):  
Steven Chatterton ◽  
Paolo Pennacchi ◽  
Andrea Vania

1983 ◽  
Vol 105 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori

The thermohydrodynamic performance of the bearing is analyzed, taking into account the three-dimensional variation of lubricant viscosity and density. The effect of pivot position and operating and environmental conditions on the performance is studied. The present analysis is compared with the isoviscous or the two-dimensional analysis, and is found to predict the bearing performance more accurately.


1991 ◽  
Vol 113 (3) ◽  
pp. 526-532 ◽  
Author(s):  
K. W. Kim ◽  
C. M. Rodkiewicz

The presented analytical consideration of tilting-pad bearings incorporates simultaneously the changes in viscosity (due to viscous dissipation) and in the nonambient inlet pressure (due to momentum depletion within the fore-region). The solution provides the following quantities: film temperature distributions, pressure distribution, maximum temperature of the pad, load capacity, friction force, coordinate of the center of pressure, and coordinate of the pivot point. Comparison with the case when the inlet pressure is assumed to be ambient indicates the significance of the pressure build-up in the fore-region.


2006 ◽  
Vol 128 (3) ◽  
pp. 585-593 ◽  
Author(s):  
A. M. Gad ◽  
M. M. Nemat-Alla ◽  
A. A. Khalil ◽  
A. M. Nasr

Recently, herringbone-grooved journal bearings have had important applications in miniature rotating machines. The scribed grooves, on either the rotating or stationary member of the bearing, can pump the lubricant inward, which generates supporting stiffness and improves the dynamic stability, especially for concentric operation. Most of the previous investigations that dealt with herringbone grooved journal bearings and grooved thrust bearings were theoretical. Few experimental attempts for the investigation of the performance characteristics of herringbone grooved journal bearings (HGJBs) and grooved thrust bearings have been done. All these investigations concentrated on rectangular and circular groove profiles of HGJBs. In order to improve the performance characteristics of HGJBs, a new design of the groove profile, the beveled-step groove profile, is introduced. The introduced groove profile is capable of increasing the pressure recovery at the divergence of the flow over the step. In addition, it increases the amount of oil pumped inward over the circular groove profile. Optimization processes were carried out experimentally, in order to obtain the optimal geometry of the introduced groove profile. The optimum geometrical parameters of the groove (groove angle α, groove width ratio β, and groove depth ratio Γ) are 29deg, 0.5, and 2.0, respectively, which give maximum radial force and maximum radial stiffness of the beveled-step HGJB. In order to check the effectiveness of the introduced beveled-step groove profile, the obtained results were compared with that for rectangular groove profile. The comparison shows that the introduced beveled-step HGJBs have higher radial force, higher load carrying capacity, and lower friction torque than the rectangular HGJBs.


Sign in / Sign up

Export Citation Format

Share Document