Low Cost Solar Selective Chromate Conversion Coatings Applied to Stainless Steel Substrates

1980 ◽  
Vol 102 (3) ◽  
pp. 188-191 ◽  
Author(s):  
J. R. Culham ◽  
P. Niessen

Solar selective surfaces have been produced on austenitic and ferritic stainless steels using an acidic chromate bath at 75°C. These surfaces have been shown to have high humidity resistance and good thermal stability. The conversion coatings can be applied uniformly over large surfaces, even surfaces of nonplanar topography. Complete sets of plating parameters for different grades of stainless steels are presented which may be used for the implementation of this process for the production of low grade heat collecting systems.

2009 ◽  
Vol 40 (7) ◽  
pp. 1631-1644 ◽  
Author(s):  
M.A. Domínguez-Crespo ◽  
E. Onofre-Bustamante ◽  
A.M. Torres-Huerta ◽  
F.J. Rodríguez-Gómez ◽  
S.E. Rodil ◽  
...  

2016 ◽  
Vol 4 (9) ◽  
pp. 3554-3559 ◽  
Author(s):  
Y. Wang ◽  
S. M. Zhang ◽  
Y. Deng

Solution based polymer thermoelectric generation technologies provide a low-cost and eco-friendly means of direct energy conversion from low-grade heat to electricity.


2020 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Valeriy Kharchenko ◽  
Arseniy Sychov ◽  
Pasquale Luigi De Angelis ◽  
Ugo Fiore

Increasing the efficiency of heat pump systems primarily used for heat supply to buildings is an important topic. This is especially true for systems constructed according to non-standard schemes and which use low-grade heat from various sources that are rarely considered for these purposes. Such studies require special, often expensive, data acquisition systems. In this paper, a low-cost computer-based monitoring system is presented. The monitoring system incorporates solutions which are new or seldom used. It is shown that modern semiconductor thermistors can replace commonly used platinum temperature sensors and thermocouples. A proposal for processing frequency output signals from sensors through an analog-to-digital converter and a way to reduce the number of required input channels are described. The monitoring system allows optimization of various types of heat-pump-based installations. The system has been used for quite a long time to monitor the operation of the heat pump installation using low-grade heat from a surface watercourse. With its help, the feasibility of using the previously proposed submersible floating heat exchanger is justified and the optimal scheme for its placement in the watercourse is determined.


2021 ◽  
Author(s):  
Aggrey Mwesigye ◽  
Seth B. Dworkin

Ejector systems are receiving considerable attention due to their simplicity, lower maintenance requirements, use of low grade heat, longer lifespan and low cost. In this paper an improved model to predict the performance of an ejector refrigeration system under both the critical and subcritical modes of operation was developed and validated. The model predicts ejector performance more precisely compared to studies following the same modelling approach in the literature. Using the developed model, performances with environmentally benign refrigerants, including R1233zd(E), HFO1336mzz(Z), R1234ze(Z), R600, RE245fa2, and RE245fa2 as alternatives to R141b and R245fa were investigated. For ejector area ratios between 4.45 to 12.98, evaporator temperatures between 0oC and 16oC and condenser temperatures between 20 and 40oC, the optimal performance of the ejector system was determined. Results show that for each refrigerant, higher area ratios give higher coefficients of performance, but require higher generator temperatures for better critical condensing temperatures. R600 showed the best performance followed by R1234Ze(Z) and R1233Zd(E) for the entire range of parameters considered. Results further show that there is an optimum generator temperature at each area ratio that maximizes performance. The optimal generator temperature increases as the area ratio and the condensing temperature increase. An alternative and more convenient approach to optimize ejector performance has been suggested in this work.


2021 ◽  
Author(s):  
Aggrey Mwesigye ◽  
Seth B. Dworkin

Ejector systems are receiving considerable attention due to their simplicity, lower maintenance requirements, use of low grade heat, longer lifespan and low cost. In this paper an improved model to predict the performance of an ejector refrigeration system under both the critical and subcritical modes of operation was developed and validated. The model predicts ejector performance more precisely compared to studies following the same modelling approach in the literature. Using the developed model, performances with environmentally benign refrigerants, including R1233zd(E), HFO1336mzz(Z), R1234ze(Z), R600, RE245fa2, and RE245fa2 as alternatives to R141b and R245fa were investigated. For ejector area ratios between 4.45 to 12.98, evaporator temperatures between 0oC and 16oC and condenser temperatures between 20 and 40oC, the optimal performance of the ejector system was determined. Results show that for each refrigerant, higher area ratios give higher coefficients of performance, but require higher generator temperatures for better critical condensing temperatures. R600 showed the best performance followed by R1234Ze(Z) and R1233Zd(E) for the entire range of parameters considered. Results further show that there is an optimum generator temperature at each area ratio that maximizes performance. The optimal generator temperature increases as the area ratio and the condensing temperature increase. An alternative and more convenient approach to optimize ejector performance has been suggested in this work.


Author(s):  
Sourav Mitra ◽  
Kandadai Srinivasan ◽  
Pramod Kumar ◽  
Pradip Dutta

The present work describes a silica gel + water adsorption-based desalination and chiller system, an emerging low cost process of integrating thermal desalination and cooling by utilizing low-grade heat. The cycle employs a combination of flash evaporation and thermal compression of steam in single/two stage to generate the dual effect. The current study aims at simulating a four-bed/stage adsorption system using energy and mass balance along with kinetics of adsorption. The performance of single- and two-stage adsorption systems is compared for ambient temperatures in the range of 25–45 °C and a constant heat source temperature of 85 °C.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Alloy Digest ◽  
1999 ◽  
Vol 48 (5) ◽  

Abstract J and L Types 409 HP are ferritic stainless steels with 11% chromium. They exhibit an excellent combination of good formability, economy, and resistance to oxidation and corrosion. It is typically used in automotive exhaust systems. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-743. Producer or source: J & L Specialty Steel Inc.


Sign in / Sign up

Export Citation Format

Share Document