Torsional Vibrations and Dynamic Loads in a Basic Planetary Gear System

1986 ◽  
Vol 108 (3) ◽  
pp. 348-353 ◽  
Author(s):  
R. August ◽  
R. Kasuba

An interative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffnesses were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system.

2019 ◽  
Vol 39 (4) ◽  
pp. 1024-1038 ◽  
Author(s):  
Hongwu Li ◽  
Jing Liu ◽  
Jinlei Ma ◽  
Yimin Shao

Planter gear system is one of the critical components of various industrial transmission systems. In general, the ring gear is elastically fixed with the gearbox. The gearbox materials and their assembly relationships will affect the support stiffness of the ring gear and system vibrations. In this paper, a multi-body dynamic model for a planetary gear system with the elastic support of ring gear is developed to discuss the influence of the radial support stiffness of ring gear on the system vibrations. The planet bearings are also considered in the multi-body dynamic model. The rotational speed of the planet gear and carrier from the simulation and theoretical results are compared to validate the developed multi-body dynamic model. The influences of the radial support stiffness of the ring gear, carrier moment, and sun gear speed on the time- and frequency-domain vibrations of the planetary gear system are analyzed. The results denote that the waveform and amplitude of the time-domain vibration of the ring gear are greatly affected by the radial support stiffness of ring gear as well as the peak frequency amplitude and its sidebands. The peak frequency in the spectrum of ring gear is slightly affected by the radial support stiffness. It indicates that this study can give some guidance for the vibration control approaches for the planetary gear systems.


Author(s):  
Shaoshuai Hou ◽  
Jing Wei ◽  
Aiqiang Zhang ◽  
Teik C. Lim ◽  
Chunpeng Zhang

Tooth friction is unavoidable and changes periodically in gear engagement. Friction excitation is an important excitation source of a gear transmission system. They are different than the friction coefficients of any two points on the same contact line of a helical/herringbone gear. In order to obtain the influence of the friction excitation on the dynamic response of a helical/herringbone planetary gear system, a method that uses piecewise solution and then summing them to analyze the friction force and frictional torque of tooth surfaces is proposed. Then, the friction coefficient is obtained based on the mixed elastohydrodynamic lubrication (EHL) theory. A dynamic model of a herringbone planetary gear system is established considering the friction, mesh stiffness, and meshing error excitation by the node finite element method. The influence of friction excitation on the dynamic response of the herringbone planetary gear is studied under different working conditions. The results show that friction excitation has a great influence on the vibration acceleration of the sun and planetary gear. However, the effect on the radial and tangential vibration acceleration of a planetary gear is the opposite. In addition, the friction excitation has a slight effect on the meshing force.


2020 ◽  
Vol 151 ◽  
pp. 103898 ◽  
Author(s):  
Chunpeng Zhang ◽  
Jing Wei ◽  
Feiming Wang ◽  
Shaoshuai Hou ◽  
Aiqiang Zhang ◽  
...  

2014 ◽  
Vol 15 (11) ◽  
pp. 2357-2366 ◽  
Author(s):  
Wei Sun ◽  
Xin Ding ◽  
Jing Wei ◽  
Xinglong Hu ◽  
Qingguo Wang

Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


Sign in / Sign up

Export Citation Format

Share Document