Application of Spencer’s Ideal Soil Model to Granular Materials Flow

1976 ◽  
Vol 43 (1) ◽  
pp. 49-53 ◽  
Author(s):  
H. L. Morrison ◽  
O. Richmond

In 1964, Spencer proposed a model for plane deformation of soils based upon the concept that the strain at any point may be considered as the resultant of simple shears on the two surface elements where Coulomb’s yield condition is met. Gravitation and acceleration terms were neglected in his full field equations. These terms are included in the present treatment, however, since they play an essential role in granular materials flow problems. It is shown that the field equations remain hyperbolic, and the characteristic equations are derived. In addition, a streamline equation, similar to Bernoulli’s classical equation for fluid flow, is derived and used together with the continuity equation to obtain one-dimensional approximate solutions to some typical hopper and chute problems. A solution is obtained for the nonsteady flow from a wedge-shaped hopper when the gate is suddenly opened, including an equation for the minimum slope necessary to prevent arching. Another solution is obtained for the profile of a hopper which has constant wall pressure. Still another solution is obtained for the relationship between the height of a chute and its exit velocity, and it suggests that the maximum trajectory usually is obtained with a horizontal exit since an upward-sloping exit requires a velocity jump at the minimum point in the chute, similar to a hydraulic jump in fluid flow. All of these solutions are ideal in the sense that they include no wall resistance to the flow, and therefore represent maximum flow rates.

2019 ◽  
pp. 109-116
Author(s):  
Steven Carlip

This final chapter consists of a brief discussion of where the reader can go from here: active research topics in general relativity and gravitation, open questions, and ideas for further study. Topics include exact and approximate solutions of the field equations, including numerical methods and perturbation theory; problems in mathematical relativity, including global geometric methods, singularity theorems, cosmic censorship, and asymptotic conditions; alternative models such as scalar-tensor models; approaches to quantum gravity; and experimental gravity. These topics are not discussed in any depth; rather, the chapter is meant as a “teaser” to encourage readers to look further.


2019 ◽  
Vol 110 ◽  
pp. 344-366 ◽  
Author(s):  
Adnan Sufian ◽  
Christopher Knight ◽  
Catherine O’Sullivan ◽  
Berend van Wachem ◽  
Daniele Dini

1963 ◽  
Vol 59 (4) ◽  
pp. 739-741 ◽  
Author(s):  
J. Hyde

It was shown by Birkhoff ((1), p. 253) that every spherically symmetric solution of the field equations of general relativity for empty space,may be reduced, by suitable coordinate transformations, to the static Schwarzschild form:where m is a constant. This result is known as Birkhoff's theorem and excludes the possibility of spherically symmetric gravitational radiation. Different proofs of the theorem have been given by Eiesland(2), Tolman(3), and Bonnor ((4), p. 167).


2014 ◽  
Vol 660 ◽  
pp. 932-936
Author(s):  
M. Mazwan Mahat ◽  
R.N. Izzati ◽  
Ilya Izyan Shahrul Azhar ◽  
Izdihar Tharazi

This paper aims to analyse the performance of impedance pump that uses energy mismatch to drive fluid flow. The experimental setup mainly focus to establish the relationship between the fluids flow rates in elastic tube section connected between two ends of solid tube and pinch mechanism location as well as fluid viscosity. Measurement of fluid flow rate or representation of its velocities resulting from the pumping mechanism is measured using two different supply voltage and constant pincher width. These measured parameters resulting from the pinch mechanism of the elastic tube section were varied at different pinch location along itsx-axis direction; divided into two main cases namely (1) 2 V and (2) 3 V at 40 mm to 140 mm pinch location. From the voltage variation, it is found that the maximum flow rate given by voltage 3.0 V at pinch location 40 mm while for the effect of viscosity, the highest flow rate is 93 ml/min. The profiles obtained revealed the characteristic of valve less pump to be the new model of new Ventricular Assist Device use in cardiac patient as well as further explanation about the factor that influence the characteristic of elastic tube.


1998 ◽  
Vol 65 (4) ◽  
pp. 1032-1041
Author(s):  
J. K. Sinha ◽  
H. V. Tippur

An infrared interferometer capable of performing real-time full-field noncontacting deformation field measurements on optically rough surfaces is proposed as a tool for elastoplastic fracture mechanics investigations. The choice of the infrared wavelength allows interferometric measurements on fracture samples with little or no surface preparation and is more tolerant of the damage accumulation near the crack. The interferometer also bridges a sensitivity gap among existing techniques for out-of-plane deformation measurement. First, a rigorous Fourier optics analysis is provided for the interferometer and the range of surface roughness that can be studied using this interferometer is examined. The interferometer is then used for mapping deformations near elastoplastically deformed cracks in aluminum beams and solder-copper bimaterials. The regions of dominant three-dimensional effects and J-dominance are examined on the sample surface by evaluating measurements along with companion finite element analyses and the HRR fields.


2015 ◽  
Vol 93 (2) ◽  
pp. 242-249 ◽  
Author(s):  
R.P. Woodard

I discuss relativistic extensions of MOND in which the metric couples normally to matter. I argue that MOND might be a residual effect from the vacuum polarization of infrared gravitons produced during primordial inflation. If so, MOND corrections to the gravitational field equations would be nonlocal. Nonlocality also results when one constructs metric field equations that reproduce the Tully–Fisher relation, along with sufficient weak lensing. I give the full field equations for the simplest class of models, and I specialize these equations to the geometries relevant for cosmology. I conclude by sketching the direction of future studies.


2010 ◽  
Vol 13 (1) ◽  
pp. 29-37 ◽  
Author(s):  
T. S. Yun ◽  
B. Dumas ◽  
J. C. Santamarina

Author(s):  
H. Levy ◽  
W. J. Robinson

AbstractIt is shown that for an axisymmetric stationary system there exists, in vacuo, a canonical coordinate system, analogous to Weyl's canonical coordinates for the static case. Some approximate solutions of the vacuum field equations are then obtained in these canonical coordinates.In the second part of this paper, the vacuum field equations for an isolated axisymmetric stationary system are set up and approximate solutions obtained by means of a multipole expansion. The physical components of the Riemann tensor are then examined and it is found that the ‘mass term’ predominates, the ‘rotation term’ being of the next order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document