Approximate Solutions of the Field Equations and Approximate Equations of Motion

Author(s):  
V. A. Brumberg
2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


From the general principles of quantum mechanics it is deduced that the wave equation of a particle can always be written as a linear differential equation of the first order with matrix coefficients. The principle of relativity and the elementary nature of the particle then impose certain restrictions on these coefficient matrices. A general theory for an elementary particle is set up under certain assumptions regarding these matrices. Besides, two physical assumptions concerning the particle are made, namely, (i) that it satisfies the usual second-order wave equation with a fixed value of the rest mass, and (ii) either the total charge or the total energy for the particle-field is positive definite. It is shown that in consequence of (ii) the theory can be quantized in the interaction free case. On introducing electromagnetic interaction it is found that the particle exhibits a pure magnetic moment in the non-relativistic approximation. The well-known equations for the electron and the meson are included as special cases in the present scheme. As a further illustration of the theory the coefficient matrices corresponding to a new elementary particle are constructed. This particle is shown to have states of spin both 3/2 and 1/2. In a certain sense it exhibits an inner structure in addition to the spin. In the non-relativistic approximation the behaviour of this particle in an electromagnetic field is the same as that of the Dirac electron. Finally, the transition from the particle to the wave form of the equations of motion is effected and the field equations are given in terms of tensors and spinors.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


2019 ◽  
pp. 109-116
Author(s):  
Steven Carlip

This final chapter consists of a brief discussion of where the reader can go from here: active research topics in general relativity and gravitation, open questions, and ideas for further study. Topics include exact and approximate solutions of the field equations, including numerical methods and perturbation theory; problems in mathematical relativity, including global geometric methods, singularity theorems, cosmic censorship, and asymptotic conditions; alternative models such as scalar-tensor models; approaches to quantum gravity; and experimental gravity. These topics are not discussed in any depth; rather, the chapter is meant as a “teaser” to encourage readers to look further.


1970 ◽  
Vol 21 (1) ◽  
pp. 18-48 ◽  
Author(s):  
C. W. Stammers

SummaryThe nature of flapping torsion flutter of a helicopter blade in forward flight is discussed. The essential complication in the analysis is the presence of periodic coefficients in the equations of motion; approximate solutions are obtained by use of a perturbation procedure. An unusual behaviour of the flutter equations which occurs when the fundamental frequency of flutter is a half-integer multiple of rotational speed is studied. Two different instability mechanisms can be distinguished and are related to the two energy sources in the system, namely the rotation of the rotor and the forward speed of the helicopter. It is found that forward flight can have a significant stabilising influence on flutter and that, as the tip speed ratio increases, flutter occurs predominantly at half-integer frequencies. The results are confirmed by the use of a numerical method.


1971 ◽  
Vol 26 (4) ◽  
pp. 599-622
Author(s):  
H. von Grünberg

Abstract In the framework of Lorentz invariant theories of gravitation the fieldtheoretic approach of the generally covariant Jordan-Brans-Dicke-theory is investigated.It is shown that a slight restriction of the gauge group of Einstein's linear tensor theory leads to the linearized Jordan-Brans-Dicke-theory. The problem of the inconsistency of the field equations and the equations of motion is solved by introducing the Landau-Lifschitz energy momentum tensor of the gravitational field as an additional source term into the field equations. The second order of the theory together with the corresponding gauge group are calculated explicitly. By means of the structure of the gauge group of the tensor field it is possible to identify the successive orders of the scalar-tensor theory as an expansion of the Jordan-Brans-Dicke-theory in flat space-time. The question of the uniqueness of the procedure is answered by showing that the structure of the gauge group of the tensor field is predetermined by the linear equations of motion. The mathematical proof of this fact confirms formally the meaning of the equations of motion for the geometry of space.


1963 ◽  
Vol 59 (4) ◽  
pp. 739-741 ◽  
Author(s):  
J. Hyde

It was shown by Birkhoff ((1), p. 253) that every spherically symmetric solution of the field equations of general relativity for empty space,may be reduced, by suitable coordinate transformations, to the static Schwarzschild form:where m is a constant. This result is known as Birkhoff's theorem and excludes the possibility of spherically symmetric gravitational radiation. Different proofs of the theorem have been given by Eiesland(2), Tolman(3), and Bonnor ((4), p. 167).


1976 ◽  
Vol 43 (1) ◽  
pp. 49-53 ◽  
Author(s):  
H. L. Morrison ◽  
O. Richmond

In 1964, Spencer proposed a model for plane deformation of soils based upon the concept that the strain at any point may be considered as the resultant of simple shears on the two surface elements where Coulomb’s yield condition is met. Gravitation and acceleration terms were neglected in his full field equations. These terms are included in the present treatment, however, since they play an essential role in granular materials flow problems. It is shown that the field equations remain hyperbolic, and the characteristic equations are derived. In addition, a streamline equation, similar to Bernoulli’s classical equation for fluid flow, is derived and used together with the continuity equation to obtain one-dimensional approximate solutions to some typical hopper and chute problems. A solution is obtained for the nonsteady flow from a wedge-shaped hopper when the gate is suddenly opened, including an equation for the minimum slope necessary to prevent arching. Another solution is obtained for the profile of a hopper which has constant wall pressure. Still another solution is obtained for the relationship between the height of a chute and its exit velocity, and it suggests that the maximum trajectory usually is obtained with a horizontal exit since an upward-sloping exit requires a velocity jump at the minimum point in the chute, similar to a hydraulic jump in fluid flow. All of these solutions are ideal in the sense that they include no wall resistance to the flow, and therefore represent maximum flow rates.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050131
Author(s):  
Osvaldo M. Moreschi

A geometrical construction for a global dynamical time for binary point-like particle systems, modeled by relativistic equations of motions, is presented. Thus, we provide a convenient tool for the calculation of the dynamics of recent models for the dynamics of black holes that use individual proper times. The construction is naturally based on the local Lorentzian geometry of the spacetime considered. Although in this presentation we are dealing with the Minkowskian spacetime, the construction is useful for gravitational models that have as a seed Minkowski spacetime. We present the discussion for a binary system, but the construction is obviously generalizable to multiple particle systems. The calculations are organized in terms of the order of the corresponding relativistic forces. In particular, we improve on the Darwin and Landau–Lifshitz approaches, for the case of electromagnetic systems. We discuss the possibility of a Lagrangian treatment of the retarded effects, depending on the nature of the relativistic forces. The higher-order contractions are based on a Runge–Kutta type procedure, which is used to calculate the quantities at the required retarded time, by increasing evaluations of the forces at intermediate times. We emphasize the difference between approximation orders in field equations and approximation orders in retarded effects in the equations of motion. We show this difference by applying our construction to the binary electromagnetic case.


Sign in / Sign up

Export Citation Format

Share Document