Fluctuating Lift Forces of the Karman Vortex Streets on Single Circular Cylinders and in Tube Bundles: Part 3—Lift Forces in Tube Bundles

1972 ◽  
Vol 94 (2) ◽  
pp. 623-628 ◽  
Author(s):  
Y. N. Chen

The trend of the fluctuating lift coefficient CL and the dimensionless shedding frequency S (Strouhal number) of the vortex in tube bundles at higher Reynolds numbers R will be predicted by the course of the steady pressure drag coefficient CD at the corresponding R ranges. Furthermore, some measurements of the vortex lift forces in tube bundles will be given. It reveals that the lift force for certain small transverse tube spacings possesses a strong second harmonic. The tubes and, therefore, the transverse gas column in the tube bundle channel can be excited to vibrate in resonance either at the critical flow velocity or at its half value. Finally, the coupled vibration between the vortex shedding and the transverse gas column will be covered with some experiments.

1972 ◽  
Vol 94 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Y. N. Chen

The fluctuating lift force of the Karman vortex on a single circular cylinder will be investigated theoretically for an ideal inviscid vortex street with rectilinear vortices. In this investigation the model introduced by von Karman will be used. As a result, the relationship between the fluctuating lift coefficient CL and the characteristic dimensions of the vortex street can be derived. This leads to establishing the equation between the fluctuating lift coefficient CL and the steady pressure drag coefficient CD. Since the curve of the theoretical lift coefficient practically envelops the spreading field of the experimentally determined points, the theory can be considered to be adequate to give the right order of magnitude for the lift of the Karman vortex. It will further be shown, that the spread of the measured values is in connection with the correlation length of the vortex along the cylinder axis.


Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


Author(s):  
Ryoichi Kawakami ◽  
Seinosuke Azuma ◽  
Toshifumi Nariai ◽  
Kazuo Hirota ◽  
Hideyuki Morita ◽  
...  

Abstract The in-plane (in-flow) fluid-elastic instability (in-plane FEI) of triangular tube arrays caused tube-to-tube wear indications as observed in the U-bend regions of tube bundles of the San Onofre Unit-3 steam generators[1]. Several researches revealed that the in-plane FEI is likely to occur in a tightly packed triangular tube array under high velocity and low friction conditions, while it is not likely to occur in a square array tube bundle. In order to confirm the potential of steam-wise fluid-elastic instability of square arrays, the critical flow velocity in two-phase flow, (sulfur hexafluoride-ethanol) which simulates steam-water flow, was investigated. Two types of test rigs were prepared to confirm the effect of the tube diameter and tube pitch ratio on the critical velocity. In both rigs, vibration amplitudes were measured in both in-flow and out-of-flow directions in various flow conditions. In any case, in-flow fluid elastic instability was not detected. Based on the results of the tests, it is concluded that the flow interaction force is small for concern to occur the fluid-elastic instability in the in-flow direction of the square tube bundles of steam generators.


1989 ◽  
Vol 111 (4) ◽  
pp. 478-487 ◽  
Author(s):  
M. J. Pettigrew ◽  
J. H. Tromp ◽  
C. E. Taylor ◽  
B. S. Kim

An extensive experimental program was carried out to study the vibration behavior of tube bundles subjected to two-phase cross-flow. Fluid-elastic instability is discussed in Part 2 of this series of three papers. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with all-flexible tubes and on bundles with one flexible tube surrounded by rigid tubes. Fluid-elastic instabilities have been observed for all tube bundles and all flow conditions. The critical flow velocity for fluid-elastic instability is significantly lower for the all-flexible tube bundles. The fluid-elastic instability behavior is different for intermittent flows than for continuous flow regimes such as bubbly or froth flows. For continuous flows, the observed instabilities satisfy the relationship V/fd = K(2πζm/ρd2)0.5 in which the minimum instability factor K was found to be around 4 for bundles of p/d = 1.47 and significantly less for p/d = 1.32. Design guidelines are recommended to avoid fluid-elastic instabilities in two-phase cross-flows.


Author(s):  
Z. Bendjeddou ◽  
E. Longatte ◽  
A. Adobes ◽  
M. Souli

In heat exchanger tube bundles like in many others industrial applications, fluid structure interaction is a crucial problem to overcome. Flow-induced tube vibration in tube bundles is due to two main kinds of physical effects: (1) fluid-elastic forces caused by structure motion; (2) turbulent forces due to vortex generation at high Reynolds numbers. The second component, turbulent excitation, is independent on structure motion and may generate wear and fatigue damage while the first component may lead to fluid-elastic instability inducing high amplitude displacement and possible tube short term failure. In this context many studies are carried out in order to develop methods for the identification of critical flow velocity in tube arrays. In the present work two methods are presented: (1) the first one relies on experimental measurements, it is fitted with analytical modeling and provides fluid-elastic coefficients; (2) the second one relies on numerical simulation using Computational Fluid Dynamics Codes (CFD) involving moving boundary techniques; it provides fluid force estimates and in some cases it makes it possible to simulate tube vibrations. The first part is devoted to experimental determination of fluid-elastic forces. A numerical method for prediction of fluid-elastic effects in fluid at rest is presented in the second section. Results of both methods are compared in the third part.


1961 ◽  
Vol 11 (2) ◽  
pp. 244-256 ◽  
Author(s):  
J. H. Gerrard

The oscillating lift and drag on circular cylinders are determined from measurements of the fluctuating pressure on the cylinder surface in the range of Reynolds number from 4 × 103 to just above 105.The magnitude of the r.m.s. lift coefficient has a maximum of about 0.8 at a Reynolds number of 7 × 104 and falls to about 0.01 at a Reynolds number of 4 × 103. The fluctuating component of the drag was determined for Reynolds numbers greater than 2 × 104 and was found to be an order of magnitude smaller than the lift.


Sign in / Sign up

Export Citation Format

Share Document