Forced Vibrations of Viscoelastic Timoshenko Beams

1976 ◽  
Vol 98 (3) ◽  
pp. 820-826 ◽  
Author(s):  
C. C. Huang ◽  
T. C. Huang

In a previous paper, the correspondence principle has been applied to derive the differential equations of motion of viscoelastic Timoshenko beams with or without external viscous damping. To study free vibrations these equations are solved by Laplace transform and boundary conditions are applied to obtain the attenuation factor and the frequency of the damped free vibrations and mode shapes. The present paper continues to analyze this subject and deals with the responses in deflection, bending slope, bending moment and shear for forced vibrations. Laplace transform and appropriate boundary conditions have been applied. Examples are given and results are plotted. The solution of forced vibrations of elastic Timoshenko beams obtained as a result of reduction from viscoelastic case and by eigenfunction expansion method concludes the paper.

1971 ◽  
Vol 38 (2) ◽  
pp. 515-521 ◽  
Author(s):  
T. C. Huang ◽  
C. C. Huang

The correspondence principle has been applied to derive the differential equations of viscoelastic Timoshenko beams with external viscous damping. These equations are solved by Laplace transform and boundary conditions are applied to obtain complex frequency equations and mode shapes for beams of any combination of end conditions. For beams without external damping, the correspondence principle can be applied directly to the available solutions of elastic Timoshenko beams. Numerical illustration is given.


1969 ◽  
Vol 36 (1) ◽  
pp. 65-72 ◽  
Author(s):  
J. D. Achenbach

The displacement components for both free and forced vibrations are sought as power series of the dimensionless wave number ε, where ε = 2π × layer thickness/wavelength. For the free vibration problem the object is to determine the frequencies, which are also sought as power series of the dimensionless wave number. The displacement and frequency expansions are substituted in the displacement equations of motion and in the boundary conditions. By collecting terms of the same order εn, a system of second-order, inhomogeneous, ordinary differential equations of the Helmholtz type is obtained, with the thickness variable as independent variable, and with associated boundary conditions. For free vibrations, subsequent integration yields the coefficients of εn for the displacements and the frequencies for all modes, and in the whole range of frequencies, but in a range of dimensionless wave numbers 0 < ε < ε* < 1, where ε* increases as more terms are retained in the expansions. For forced vibrations, the amplitudes are determined in an analogous manner if the external surface tractions are of sinusoidal dependence on the in-plane coordinates and on time. The response to surface tractions of more general spatial dependence is obtained by Fourier superposition.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


1995 ◽  
Vol 62 (1) ◽  
pp. 193-199 ◽  
Author(s):  
M. W. D. White ◽  
G. R. Heppler

The equations of motion and boundary conditions for a free-free Timoshenko beam with rigid bodies attached at the endpoints are derived. The natural boundary conditions, for an end that has an attached rigid body, that include the effects of the body mass, first moment of mass, and moment of inertia are included. The frequency equation for a free-free Timoshenko beam with rigid bodies attached at its ends which includes all the effects mentioned above is presented and given in terms of the fundamental frequency equations for Timoshenko beams that have no attached rigid bodies. It is shown how any support / rigid-body condition may be easily obtained by inspection from the reported frequency equation. The mode shapes and the orthogonality condition, which include the contribution of the rigid-body masses, first moments, and moments of inertia, are also developed. Finally, the effect of the first moment of the attached rigid bodies is considered in an illustrative example.


2010 ◽  
Vol 7 ◽  
pp. 219-229
Author(s):  
R.G. Yakupov

The stresses and deformations of a semi-infinite rod located in an elastic medium are considered when the dynamic load acts on the end face. Using the respect to time Laplace transform, a system of two differential equations of motion of the theory of Timoshenko beams has been solved. The integrals obtained are determined numerically. The graphs of the change in deflection and bending moment along the longitudinal coordinate are given.


Author(s):  
Igor Orynyak ◽  
Yaroslav Dubyk

Simple approximate formulas for the natural frequencies of circular cylindrical shells are presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory the equations of motion of the circular cylindrical shell are introduced, using Vlasov assumptions and Fourier series for the circumferential direction, an exact solution in the axial direction is obtained. To improve the results assumptions of Vlasov’s semimomentless theory are enhanced, i.e. we have used only the hypothesis of middle surface inextensibility to obtain a solution in axial direction. Nonlinear characteristic equations and natural mode shapes, are derived for all type of boundary conditions. Good agreement with experimental data and FEM is shown and advantage over the existing formulas for a variety of boundary conditions is presented.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983445
Author(s):  
Ma’en S Sari ◽  
Wael G Al-Kouz ◽  
Rafat Al-Waked

The stability and free vibration analyses of single and double composite Timoshenko beams have been investigated. The closed-section beams are subjected to constant axially compressive or tensile forces. The double beams are assumed to be connected by a layer of elastic translational and rotational springs. The coupled governing partial differential equations of motion are discretized, and the resulted eigenvalue problem is solved numerically by applying the Chebyshev spectral collocation method. The effects of the elastic layer parameters, the axial forces, the slenderness ratio, the bending–torsional coupling, and the boundary conditions on the critical buckling loads, mode shapes, and natural transverse frequencies have been studied. A parametric study was performed, and the obtained results revealed different features, which hopefully can be useful for single- and double-beam-like engineering structures.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Reza Ansari ◽  
Mostafa Faghih Shojaei ◽  
Vahid Mohammadi ◽  
Raheb Gholami ◽  
Mohammad Ali Darabi

In this paper, a geometrically nonlinear first-order shear deformable nanoplate model is developed to investigate the size-dependent geometrically nonlinear free vibrations of rectangular nanoplates considering surface stress effects. For this purpose, according to the Gurtin–Murdoch elasticity theory and Hamilton's principle, the governing equations of motion and associated boundary conditions of nanoplates are derived first. Afterwards, the set of obtained nonlinear equations is discretized using the generalized differential quadrature (GDQ) method and then solved by a numerical Galerkin scheme and pseudo arc-length continuation method. Finally, the effects of important model parameters including surface elastic modulus, residual surface stress, surface density, thickness and boundary conditions on the vibration characteristics of rectangular nanoplates are thoroughly investigated. It is found that with the increase of the thickness, nanoplates can experience different vibrational behavior depending on the type of boundary conditions.


Author(s):  
Nikhit N. Nair ◽  
Hamid N. Hashemi ◽  
Grant M. Warner

The vibration characteristics of a circumferentially cracked rotating disk are investigated. The disk is assumed to be axisymmetric, flexible and clamped at the center. The crack increases the local flexibility of the disk at the crack location and is modeled as linear and torsional springs, connecting the two segments of the disk. The spring constants are evaluated by considering crack opening displacements due to bending moment and shear force at the crack location. The equations of motion of two segments of the disk, for disk operating in vacuum as well as subjected to shear fluid flow are developed. Using the Finite Difference Technique, the coupled systems of equations are solved and the natural frequencies and mode shapes are obtained. The mode shapes are seen to be comparatively flattened in the inner region of the disk separated by the crack and heightened towards the periphery of the disk. Shear fluid loading reduces the critical speeds and results in a quicker onset of instability. The degree of instability caused by the crack is a function of crack depth and location. Critical speeds increase with increasing crack distance from the central clamp and decrease with increasing crack depth.


2020 ◽  
Vol 10 (2) ◽  
pp. 493 ◽  
Author(s):  
Ma’en S. Sari ◽  
Wael G. Al-Kouz ◽  
Anas M. Atieh

The natural vibration behavior of axially functionally graded (AFG) double nanobeams is studied based on the Euler–Bernoulli beam and Eringen’s non-local elasticity theory. The double nanobeams are continuously connected by a layer of linear springs. The oscillatory differential equation of motion is established using the Hamilton’s principle and the constitutive relations. The Chebyshev spectral collocation method (CSCM) is used to transform the coupled governing differential equations of motion into algebraic equations. The discretized boundary conditions are used to modify the Chebyshev differentiation matrices, and the system of equations is put in the matrix-vector form. Then, the dimensionless transverse frequencies and the mode shapes are obtained by solving the standard eigenvalue problem. The effects of the coupling springs, Winkler stiffness, the shear stiffness parameter, the breadth and taper ratios, the small-scale parameter, and the boundary conditions on the natural transverse frequencies are carried out. Several numerical examples were conducted, and the authors believe that the results may be interesting in designing and analyzing double and multiple one-dimensional nano structures.


Sign in / Sign up

Export Citation Format

Share Document