Analytical Prediction of Three Dimensional Cutting Process—Part 1: Basic Cutting Model and Energy Approach

1978 ◽  
Vol 100 (2) ◽  
pp. 222-228 ◽  
Author(s):  
E. Usui ◽  
A. Hirota ◽  
M. Masuko

The paper proposes a new model of chip forming process in three dimensional cutting with single point tool, in which the process is interpreted as a piling up of orthogonal cuttings along the cutting edge. Based upon the proposed model, an energy method similar to the upper bound approach, which enables to predict the chip formation and the three components of cutting force by using only the orthogonal cutting data, is developed. The method is also applied to predict chip formation and cutting force in oblique cutting, plain milling, and groove cutting operations.

1978 ◽  
Vol 100 (2) ◽  
pp. 229-235 ◽  
Author(s):  
E. Usui ◽  
A. Hirota

The cutting model and the energy method to predict chip formation and cutting force, which were proposed in the previous part of this study, are extended to machining with conventional single-point tool. The prediction is always possible in the practical range of cutting conditions regardless of size of cutting and tool geometry, if only orthogonal cutting data under equivalent cutting conditions are in hand. The predicted results are verified to be in good agreement with the experimental results in a wide variety of depth of cut, side and back rake angles, side cutting edge angle, and nose radius.


2011 ◽  
Vol 264-265 ◽  
pp. 1062-1072
Author(s):  
Shen Yung Lin ◽  
Y.Y. Cheng ◽  
C.T. Chung

First, a 2D orthogonal cutting model for titanium alloy is constructed by finite element method in this study. The cutting tool is incrementally advanced forward from an incipient stage of tool-workpiece engagement to a steady state of chip formation. Cockroft and Latham fracture criterion [1] is adopted as a chip separation criterion. By changing the settings of cutting variables such as cutting speed, depth of cut and tool rake angle to investigate the chip formation process and the variation of cutting performance during titanium cutting simulation. The changes of chip type, cutting force, effective stress/strain and cutting temperature with different cutting condition combinations are thus analyzed. The result demonstrates that the serrated chip type is obviously produced when cutting titanium alloy. Next, water-based and oil-based cutting fluids are employed in conjunction with proper cutting parameter arrangements to perform up-milling experiments. By measuring the cutting force, surface roughness and tool wear to investigate the effect of these combinations of milling variables on the variation of cutting performance for Ti-6Al-4V. The chip shape and cutting force obtained from the experiment are compared with those calculated from simulation. It is shown that there is a good agreement between simulation and experimental results.


1999 ◽  
Vol 121 (4) ◽  
pp. 586-592 ◽  
Author(s):  
Y. Altıntas¸ ◽  
E. Shamoto ◽  
P. Lee ◽  
E. Budak

The paper presents an analytical method to predict stability lobes in ball end milling. Analytical expressions are based on the dynamics of ball end milling with regeneration in the uncut chip thickness, time varying directional factors and the interaction with the machine tool structure. The cutting force coefficients are derived from orthogonal cutting data base using oblique transformation method. The influence of cutting coefficients on the stability is investigated. A computationally efficient, an equivalent average cutting force coefficient method is developed for ball end milling. The prediction of stability lobes for ball end milling is reduced to the solution of a simple quadratic equation. The analytical results agree well with the experiments and the computationally expensive and complex numerical time domain simulations.


Author(s):  
Raviraj Shetty ◽  
Sanjeev Kumar ◽  
Ravindra Mallagi ◽  
Laxmikanth Keni

The outstanding characteristics of titanium alloy (Ti–6Al–4V) have made this material applicable in aerospace and medical components. However, due to its poor machinability characteristics, researchers are forced to understand the machinability behavior of Ti–6Al–4V. In this paper, [Formula: see text] orthogonal array-based three-dimensional finite element modeling for the cutting force and chip formation analysis during the machining of Ti–6Al–4V using cubic boron nitride tool in dry turning environment has been investigated. The finite element simulation was performed using ANSYS Workbench, version 19.0. Cutting force and chip formation were investigated using the results obtained from [Formula: see text] orthogonal array-based three-dimensional finite element modeling. This research would help to identify the optimum cutting conditions and minimize the cutting force followed by analyzing the types of chips formed during machining under the selected set of cutting conditions.


2012 ◽  
Vol 268-270 ◽  
pp. 422-425
Author(s):  
Mu Lan Wang ◽  
Jun Ming Hou ◽  
Bao Sheng Wang ◽  
Wen Zheng Ding

The application of Finite Element Method (FEM) in cutting force model for Aluminium alloy work-piece is useful to reduce the production costs and shorten the experimental period. Firstly, the theoretical model of the orthogonal cutting and the oblique cutting are analyzed in this paper. And then, the corresponding finite element models are theoretically constructed. By comparing the results, the following conclusions are drawn: with the increase of the cutting thickness, the cutting force increasing is in an enhancement tendency. The oblique cutting model of overall tool is more conductive to the subsequent runout and the flutter analysis.


2010 ◽  
Vol 97-101 ◽  
pp. 1961-1964 ◽  
Author(s):  
Wei Guo Wu ◽  
Gui Cheng Wang ◽  
Chun Gen Shen

In this work, the prediction and analysis of cutting forces in precision turning operations is presented. The model of cutting forces is based on the oblique cutting force model which was rebuilt by two coordinate conversions from the orthogonal cutting model. Then the cutting field in precision turning was divided into two fields which are characterized as curve change and linear change on cutter edge and they were modeled respectively. Cutting field of cutter nose was modeled by differential method and its cutting force distribution is predicted by the proposed method. The predicted results for the cutting forces are in agreement with the experimental results under a variety of operation variables, including changes in the depths of cut and in the feedrate.


1967 ◽  
Vol 89 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Russell F. Henke

This paper is the latest of a continuing series on the subject of self-excited machine tool chatter. The representation of the metal cutting process as required by the previously developed closed-loop chatter theory is extended to oblique cutting with tools of practical shape and geometry. The cutting process parameters essential to proper application of the stability theory are found by an analytical formulation leading to a classical eigenvalue problem. Techniques are developed to determine the steady-state constant of proportionality between resultant cutting force and uncut chip area, the direction of resultant cutting force, and the direction of maximum cutting stiffness for any single-point cutting operation. In the process, a general method to predict steady-state oblique cutting forces is evolved. The method depends on certain experimentally justifiable assumptions and utilizes previously compiled orthogonal cutting data.


2013 ◽  
Vol 288 ◽  
pp. 318-322
Author(s):  
Rui Tao Peng ◽  
Jia Yi Wu ◽  
Xin Zi Tang ◽  
Yuan Qiang Tan

Chip morphology plays a predominant role in determining machinability and tool wear during the machining of titanium alloys. Chip formation process in prestressed cutting of titanium alloy TC4 was numerically explored via the finite element method. Crack initiation during the chip segmentation was realized by using a ductile fracture criterion which based on the strain energy. Effect of prestress on cutting force and chip formation as well as Mises stress distributions were revealed. The results indicate that chips show the similar characteristic of continuous and regular serrated shape, which is not affected by prestress. Initial stress distribution of workpiece was changed by prestress, which correspondingly leads to the alteration of stress distribution in the subsurface layer. The generated cutting force curves share the same average amplitude and analogous rhythm, which correspond to the chip forming process respectively.


Sign in / Sign up

Export Citation Format

Share Document