The Calculation of the Quasi-Three-Dimensional Flow in an Axial Gas Turbine

1975 ◽  
Vol 97 (2) ◽  
pp. 283-294 ◽  
Author(s):  
S. Biniaris

The flow is calculated within the entire region from far upstream to far downstream of the blade rows and this not only between the blade rows but especially within the blade passages. It is assumed that the flow is steady, adiabatic, and inviscid. However, compressibility, blade forces in all directions, blade thickness, and total enthalpy gradients are taken into account. The shape of the meridional cross section can be arbitrary. The blades can be either cylindrical or twisted. The numerical solution is based on the finite-difference method. The discretization error, the stability error, and the iteration error of the numerical solution are determined.

Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


2018 ◽  
Vol 211 ◽  
pp. 04007
Author(s):  
Alexander Petrov ◽  
Semyon Shkundin

The establishment of dispatching and automatic control systems for mine ventilation is impossible without the availability of perfect air flow rate sensors. Existing anemometers (tachometer, heat) do not meet these requirements. The error of average in cross section velocity measurements with such sensors reaches 15-20, sometimes 30%. The reason - the speed measured at one point is interpreted as the average over the cross section. The reliability of the sensors is small, because they are exposed to the damaging effect of a dusty atmosphere. Stationary installed anemometers clutter cross section, which is not always allowed. Fermat’s variational principle is used for derivation of the formula for the time of propagation of a sonic signal between two set points A and B in a steady three-dimensional flow of a fluid or gas. It is shown that the fluid flow changes the time of signal reception by a value proportional to the flow rate independently of the velocity profile. The time difference in the reception of the signals from point B to point A and vice versa is proportional with a high accuracy to the flow rate. It is shown that the relative error of the formula does not exceed the square of the largest Mach number. This makes it possible to measure the flow rate of a fluid or gas with an arbitrary steady subsonic velocity field


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Natalia C. Rosca ◽  
Alin V. Rosca ◽  
Ioan Pop

Purpose The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable stretching/shrinking sheet. Design/methodology/approach The combination of aluminum oxide (Al2O3) and copper (Cu) nanoparticles with total volumetric concentration is numerically analyzed using the existing correlations of hybrid nanofluid. With the consideration that both homogeneous and heterogeneous reactions are isothermal while the diffusion coefficients of both autocatalyst and reactant are same, the governing model is simplified into a set of differential (similarity) equations. Findings Using the bvp4c solver, dual solutions are presented, and the stability analysis certifies the physical/real solution. The findings show that the suction parameter is requisite to induce the steady solution for shrinking parameter. Besides, the fluid concentration owing to the shrinking sheet is diminished with the addition of surface reaction. Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.


1967 ◽  
Vol 28 (1) ◽  
pp. 149-151 ◽  
Author(s):  
A. Davey ◽  
D. Schofield

This paper shows the existence of a three-dimensional solution of the boundary-layer equations of viscous incompressible flow in the immediate neighbourhood of a two-dimensional stagnation point of attachment. The numerical solution has been obtained.


1964 ◽  
Vol 19 (4) ◽  
pp. 491-512 ◽  
Author(s):  
J. H. McCarthy

A solution is obtained for steady, moderately sheared, three-dimensional flow past a wire grid of arbitrary resistance distribution which is placed normal to the axis of a duct of arbitrary but constant cross-section. The formulation presented is an extension of those given by Owen & Zienkiewicz (1957) and Elder (1959) for weakly shared, two-dimensional flow past wire grids. Unlike these earlier formulations, however, in the present study the equations of motion are solved without placing restrictions on the magnitude of variation of resistance across the grid. The resulting solution, taking account of streamline deflexions, is verified experimentally for moderately sheared flow past three grids constructed to produce three widely differing velocity distributions in a water tunnel of circular cross-section.


2020 ◽  
Vol 34 (30) ◽  
pp. 2050289
Author(s):  
Abdulghani R. Alharbi ◽  
M. B. Almatrafi ◽  
Aly R. Seadawy

The Kudryashov technique is employed to extract several classes of solitary wave solutions for the Joseph–Egri equation. The stability of the achieved solutions is tested. The numerical solution of this equation is also investigated. We also present the accuracy and the stability of the numerical schemes. Some two- and three-dimensional figures are shown to present the solutions on some specific domains. The used methods are found useful to be applied on other nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document